【題目】如圖,平面直角坐標(biāo)系中,直線AB:y=-2x+8交y軸于點(diǎn)A,交x軸于點(diǎn)B,以AB為底作等腰三角形△ABC的頂點(diǎn)C恰好落在y軸上,連接BC,直線x=2交AB于點(diǎn)D,交BC于點(diǎn)E,交x軸于點(diǎn)G,連接CD.
(1)求證:∠OCB=2∠CBA;
(2)求點(diǎn)C的坐標(biāo)和直線BC的解析式;
(3)求△DEB的面積;
(4)在x軸上存在一點(diǎn)P使PD-PC最長(zhǎng),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
【答案】(1)證明見解析;(2)C(0,3),直線BC解析式為y=-x+3;(3);(4)P(-6,0).
【解析】
(1)利用等腰三角形的性質(zhì)和外角的性質(zhì)可證得結(jié)論;
(2)可先求得A、B的坐標(biāo),則可求得OA=8、OB=4,在設(shè)OC=x,則AC=BC=8-x,在Rt△OBC中由勾股定理可列方程,可求得OC的長(zhǎng),則可求得點(diǎn)C的坐標(biāo),再利用待定系數(shù)法可求得直線BC的解析式;
(3)由直線AB、BC的解析式可分別求得點(diǎn)D、E的坐標(biāo),則可求得DE的長(zhǎng),可求得△DEB的面積;
(4)利用三角形三邊關(guān)系可知PD-PC<CD,當(dāng)P、D、C三點(diǎn)在一條線上時(shí),則有PD-PC=CD,此時(shí)其差最長(zhǎng),延長(zhǎng)CD交x軸于點(diǎn)P,則該點(diǎn)即為P點(diǎn),由C、D的坐標(biāo)可求得直線CD的解析式,則可求得點(diǎn)P的坐標(biāo).
(1)證明:
∵△ABC為等腰三角形,
∴∠CAB=∠CBA,∠OCB為外角,
∴∠OCB=∠CAB+∠CBA,
∴∠OCB=2∠CBA;
(2)在y=-2x+8中,令x=0可得y=8,令y=0可求得x=4,
∴A(0,8),B(4,0),
∴OA=8,OB=4,
設(shè)OC=x,則AC=BC=8-x,
在Rt△OBC中,由勾股定理可得BC2=OC2+OB2,
即(8-x)2=x2+42,解得x=3,
∴C(0,3),
設(shè)直線BC解析式為y=kx+b,
把B、C點(diǎn)的坐標(biāo)代入可得
,解得,
∴直線BC解析式為y=-x+3;
(3)直線x=2交AB于點(diǎn)D,交BC于點(diǎn)E,交x軸于點(diǎn)G,
∴D(2,4),E(2,),G(2,0),
∴DE=4-=,且B(4,0),
∴BG=4-2=2,
∴S△DEB=DEBG=××2=;
(4)∵PD-PC<CD,
∴當(dāng)P、D、C三點(diǎn)在一條線上時(shí),則有PD-PC=CD,此時(shí)其差最長(zhǎng),
延長(zhǎng)CD交x軸于點(diǎn)P,則該點(diǎn)即為P點(diǎn),
設(shè)直線CD解析式為y=mx+n,
把C、D坐標(biāo)代入可得,解得,
∴直線CD解析式為y=x+3,
令y=0可得x+3=0,解得x=-6,
∴P(-6,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校墻邊有兩根木桿.
(1)某一時(shí)刻甲木桿在陽光下的影子如圖所示,你能畫出乙木桿的影子嗎?(用線段表示影子)
(2)當(dāng)乙木桿移動(dòng)到什么位置時(shí),其影子剛好不落在墻上?
(3)在你所畫的圖中有相似三角形嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖像與軸、軸分別交于點(diǎn)B、A.以AB為邊在第一象限內(nèi)作等腰直角三角形ABC,且∠ABC=90°,BA=BC,作OB的垂直平分線l,交直線AB與點(diǎn)E,交x軸于點(diǎn)G.
(1)求點(diǎn)的坐標(biāo);
(2)在OB的垂直平分線l上有一點(diǎn)M,且點(diǎn)M與點(diǎn)C位于直線AB的同側(cè),使得,求點(diǎn)M的坐標(biāo);
(3)在(2)的條件下,聯(lián)結(jié)CE、CM,判斷△CEM的形狀,并給予證明;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠A=∠D=90°,點(diǎn)E、F在線段BC上,DE與AF交于點(diǎn)O,且AB=DC,BE=CF.求證:
(1)AF=DE
(2)若OP⊥EF,求證:OP平分∠EOF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙中(小正方形的邊長(zhǎng)為1),反比例函數(shù)y=與直線的交點(diǎn)A、B均在格點(diǎn)上,根據(jù)所給的直角坐標(biāo)系(O是坐標(biāo)原點(diǎn)),解答下列問題:
(1)分別寫出點(diǎn)A、B的坐標(biāo)后,把直線AB向右平移5個(gè)單位,再向上平移5個(gè)單位,畫出平移后的直線A′B′;
(2)若點(diǎn)C在函數(shù)y=的圖象上,△ABC是以AB為底的等腰三角形,請(qǐng)寫出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用洗衣粉洗衣物時(shí),漂洗的次數(shù)與衣物中洗衣粉的殘留量近似地滿足反比例函數(shù)關(guān)系,寄宿生小紅和小敏晚飯后用同一種洗衣粉各自洗一件同樣的衣服,漂洗時(shí),小紅每次用一盆水(約10升),小敏每次用半盆水(約5升).如果她們都用了5克洗衣粉,第一次漂洗后,小紅的衣服中殘留的洗衣粉還有1.5克,小敏的衣服中殘留的洗衣粉還有2克.
(1)請(qǐng)幫助小紅和小敏求出各自衣服中洗衣粉的殘留量y與漂洗次數(shù)x之間的函數(shù)關(guān)系式
(2)當(dāng)洗衣粉的殘留量降至0.5克時(shí),便視為衣服漂洗干凈,從節(jié)約用水的角度來看,你認(rèn)為誰的漂洗方法值得提倡?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(a,6),AB⊥x軸于點(diǎn)B,=,反比例函數(shù)y=的圖象的一支分別交AO、AB于點(diǎn)C、D.延長(zhǎng)AO交反比例函數(shù)的圖象的另一支于點(diǎn)E.已知點(diǎn)D的縱坐標(biāo)為.
(1)求反比例函數(shù)的解析式及點(diǎn)E的坐標(biāo);
(2)連接BC,求S△CEB.
(3)若在x軸上的有兩點(diǎn)M(m,0)N(-m,0).
①以E、M、C、N為頂點(diǎn)的四邊形能否為矩形?如果能求出m的值,如果不能說明理由.
②若將直線OA繞O點(diǎn)旋轉(zhuǎn),仍與y=交于C、E,能否構(gòu)成以E、M、C、N為頂點(diǎn)的四邊形為菱形,如果能求出m的值,如果不能說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一束光線從點(diǎn)A(3,3)出發(fā),經(jīng)過y軸上點(diǎn)C反射后經(jīng)過點(diǎn)B(1,0),則光線從A點(diǎn)到B點(diǎn)經(jīng)過的路線長(zhǎng)是( 。
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“垃圾不落地,商南更美麗”。某中學(xué)為了了解七年級(jí)學(xué)生對(duì)這個(gè)一倡議的落實(shí)情況,學(xué)校安排政教處在七年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生,并針對(duì)學(xué)生“是否隨手丟垃圾”這一情況進(jìn)行了問卷調(diào)查,將這一情況分為:——從不隨手丟垃圾;——偶爾隨手丟垃圾;——經(jīng)常隨手丟垃圾三項(xiàng)。要求每位被調(diào)查的學(xué)生必須從以上三項(xiàng)中選一項(xiàng)且只能選一項(xiàng),F(xiàn)將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖。請(qǐng)你根據(jù)以上信息,解答下列問題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(2)圖中“偶爾隨手丟垃圾”所在扇形的圓心角為______________;
(3)若該校七年級(jí)共有1500名學(xué)生,請(qǐng)你估計(jì)該年級(jí)學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有多少人?談?wù)勀愕目捶ǎ?/span>
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com