【題目】“垃圾不落地,商南更美麗”。某中學(xué)為了了解七年級(jí)學(xué)生對(duì)這個(gè)一倡議的落實(shí)情況,學(xué)校安排政教處在七年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生,并針對(duì)學(xué)生“是否隨手丟垃圾”這一情況進(jìn)行了問卷調(diào)查,將這一情況分為:——從不隨手丟垃圾;——偶爾隨手丟垃圾;——經(jīng)常隨手丟垃圾三項(xiàng)。要求每位被調(diào)查的學(xué)生必須從以上三項(xiàng)中選一項(xiàng)且只能選一項(xiàng),F(xiàn)將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖。請(qǐng)你根據(jù)以上信息,解答下列問題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(2)圖中“偶爾隨手丟垃圾”所在扇形的圓心角為______________;
(3)若該校七年級(jí)共有1500名學(xué)生,請(qǐng)你估計(jì)該年級(jí)學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有多少人?談?wù)勀愕目捶ǎ?/span>
【答案】(1)見解析;(2)234°;(3)75人,見解析.
【解析】
(1)根據(jù)A情況的人數(shù)及其所占百分比求得總?cè)藬?shù),用總?cè)藬?shù)減去A、B人數(shù)求得C情況的人數(shù),再用B情況人數(shù)除以總?cè)藬?shù)可得其百分比;
(2)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得扇形統(tǒng)計(jì)圖中B所在扇形的圓心角度數(shù);
(3)總?cè)藬?shù)乘以樣本中C情況的百分比可得.
解:(1)∵被調(diào)查的總?cè)藬?shù)為60÷30%=200人,
∴C情況的人數(shù)為200-(60+130)=10人,B情況人數(shù)所占比例為
×100%=65%,
補(bǔ)全圖形如下:
;
(2)由(1)知B情況人數(shù)所占比例為65%,所以圓心角65%×=;
(3)∵“經(jīng)常隨手丟垃圾”的學(xué)生所占比例為5%,
∴1500×5%=75(人),
答:估計(jì)該年級(jí)學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有75人,就該年級(jí)經(jīng)常隨手丟垃圾的學(xué)生人數(shù)看出仍需要加強(qiáng)公共衛(wèi)生教育、宣傳和監(jiān)督.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線AB:y=-2x+8交y軸于點(diǎn)A,交x軸于點(diǎn)B,以AB為底作等腰三角形△ABC的頂點(diǎn)C恰好落在y軸上,連接BC,直線x=2交AB于點(diǎn)D,交BC于點(diǎn)E,交x軸于點(diǎn)G,連接CD.
(1)求證:∠OCB=2∠CBA;
(2)求點(diǎn)C的坐標(biāo)和直線BC的解析式;
(3)求△DEB的面積;
(4)在x軸上存在一點(diǎn)P使PD-PC最長,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了促進(jìn)學(xué)生多樣化發(fā)展,某校組織開展了社團(tuán)活動(dòng),分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(tuán)(要求人人參與社團(tuán),每人只能選擇一項(xiàng)).為了解學(xué)生喜愛哪種社團(tuán)活動(dòng),學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調(diào)查了多少人?
(2)求文學(xué)社團(tuán)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該校有1500名學(xué)生,請(qǐng)估計(jì)喜歡體育類社團(tuán)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】口袋中裝有四個(gè)大小完全相同的小球,把它們分別標(biāo)號(hào)1,2,3,4,從中隨機(jī)摸出一個(gè)球,記下數(shù)字后放回,再從中隨機(jī)摸出一個(gè)球,利用樹狀圖或者表格求出兩次摸到的小球數(shù)和等于4的概率.
【答案】 .
【解析】試題分析:
根據(jù)題意列表如下,由表可以得到所有的等可能結(jié)果,再求出所有結(jié)果中,兩次所摸到小球的數(shù)字之和為4的次數(shù),即可計(jì)算得到所求概率.
試題解析:
列表如下:
1 | 2 | 3 | 4 | |
1 | (1,1) | (1,2) | (1,3) | (1,4) |
2 | (2,1) | (2,2) | (2,3) | (2,4) |
3 | (3,1) | (3,2) | (3,3) | (3,4) |
4 | (4,1) | (4,2) | (4,3) | (4,4) |
由表可知,共有16種等可能事件,其中兩次摸到的小球數(shù)字之和等于4的有(3,1)、(2,2)和(1,3),共計(jì)3種,
∴P(兩次摸到小球的數(shù)字之和等于4)=.
【題型】解答題
【結(jié)束】
23
【題目】小亮同學(xué)想利用影長測(cè)量學(xué)校旗桿AB的高度,如圖,他在某一時(shí)刻立1米長的標(biāo)桿測(cè)得其影長為1.2米,同時(shí)旗桿的投影一部分在地面上BD處,另一部分在某一建筑的墻上CD處,分別測(cè)得其長度為9.6米和2米,求旗桿AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,交BF于點(diǎn)C,BD平分∠ABC,交AE于點(diǎn)D,連接CD.
(1)求證:四邊形ABCD是菱形;
(2)若AB=5,AC=6,求AE,BF之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為倡導(dǎo)讀書風(fēng)尚,打造書香校園,學(xué)校計(jì)劃購買一批圖書。若同時(shí)購進(jìn)種圖書10本和種圖書7本,共需395元;若同時(shí)購進(jìn)種圖書5本和種圖書3本,共需185元。
(1)求兩種圖書的單價(jià)各是多少元?
(2)若學(xué)校計(jì)劃購買這兩種圖書共80本,要求每種都要購買,且種圖書的數(shù)量少于種圖書的數(shù)量,又根據(jù)學(xué)校預(yù)算,購買總金額不能超過1890元,請(qǐng)問學(xué)校共有幾種購買方案?(請(qǐng)寫出具體的購買方案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD中,E為DC邊上一點(diǎn),且DE=1,將AE繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90度,得到EF,連接AF,FC,則FC=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第一象限C,D兩點(diǎn),坐標(biāo)軸交于A、B兩點(diǎn),連結(jié)OC,OD(O是坐標(biāo)原點(diǎn)).
(1)利用圖中條件,求反比例函數(shù)的解析式和m的值;
(2)求△DOC的面積.
(3)雙曲線上是否存在一點(diǎn)P,使得△POC和△POD的面積相等?若存在,給出證明并求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售進(jìn)價(jià)為2元的雪糕,在銷售中發(fā)現(xiàn),此商品的日銷售單價(jià)x(元)與日銷售量y(根)之間有如下關(guān)系:
日銷售單價(jià)x(元) | 3 | 4 | 5 | 6 |
日銷售量y(根) | 40 | 30 | 24 | 20 |
(1)猜測(cè)并確定y和x之間的函數(shù)關(guān)系式;
(2)設(shè)此商品銷售利潤為W,求W與x的函數(shù)關(guān)系式,若物價(jià)局規(guī)定此商品最高限價(jià)為10元/根,你是否能求出商品日銷售最大利潤?若能請(qǐng)求出,不能請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com