【題目】△ABC中,∠C=90°,AB=1,tanA=,過(guò)AB邊上一點(diǎn)P作PE⊥AC于E,PF⊥BC于F,E、F是垂足,則EF的最小值等于_____.
【答案】.
【解析】
根據(jù)已知∠A的正切值及勾股定理求出AC、BC長(zhǎng),可以利用勾股定理將EF2用PE長(zhǎng)度表示,利用二次函數(shù)的最值問(wèn)題求解,也可以利用矩形對(duì)角線(xiàn)相等轉(zhuǎn)換成求CP最小值,利用垂線(xiàn)段最短和等面積法求解.
方法1:△ABC中,∠C=90°,AB=1,tanA=,
∴AC=,BC=.
設(shè)PE=x,則PF=﹣x.
EF2=PF2+PE2=
∴EF的最小值等于.
方法2:可知四邊形CEPF是矩形,故EF=CP
而只有當(dāng)CP⊥AB時(shí),CP才最小,
由AB=1,tanA=,
∴AC=,BC=.
由面積法可求出此時(shí)CP長(zhǎng)
ACBC=CPAB
即××=CP×1
∴CP=.
則EF的最小值等于.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元,試營(yíng)銷(xiāo)階段發(fā)現(xiàn):當(dāng)銷(xiāo)售單價(jià)是25元時(shí),每天的銷(xiāo)售量為250件,銷(xiāo)售單價(jià)每上漲1元,每天的銷(xiāo)售量就減少10件
(1)寫(xiě)出商場(chǎng)銷(xiāo)售這種文具,每天所得的銷(xiāo)售利潤(rùn)(元)與銷(xiāo)售單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)求銷(xiāo)售單價(jià)為多少元時(shí),該文具每天的銷(xiāo)售利潤(rùn)最大;
(3)商場(chǎng)的營(yíng)銷(xiāo)部結(jié)合上述情況,提出了A、B兩種營(yíng)銷(xiāo)方案
方案A:該文具的銷(xiāo)售單價(jià)高于進(jìn)價(jià)且不超過(guò)30元;
方案B:每天銷(xiāo)售量不少于10件,且每件文具的利潤(rùn)至少為25元
請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線(xiàn)AB與x軸、y軸分別交于點(diǎn)A、B,作等腰直角三角形ABC,使∠BAC=90°,將△ABC沿著射線(xiàn)AB平移得到△A′B′C′,當(dāng)點(diǎn)A′與點(diǎn)B重合時(shí)停止運(yùn)動(dòng).設(shè)平移距離為m,△A′B′C′與△ABO重合部分的面積為S,S關(guān)于m的函數(shù)圖象如圖2所示.(其中0≤m≤時(shí),函數(shù)的解析式不同)
(1)填空:a= ;
(2)求直線(xiàn)AB的解析式;
(3)求S關(guān)于m的解析式,并寫(xiě)出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,CD切⊙O于C點(diǎn),弦CF⊥AB于E點(diǎn),連結(jié)AC.
(1)求證:∠ACD=∠ACF;
(2)當(dāng)AD⊥CD,BE=2cm,CF=8cm,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,A,B,C,點(diǎn)P為任意一點(diǎn),已知PA⊥PB,則線(xiàn)段PC的最大值為( )
A.3B.5C.8D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,過(guò)點(diǎn)作的平行線(xiàn)與的平分線(xiàn)交于點(diǎn),與交于點(diǎn),則的長(zhǎng)為( )
A.8B.C.10D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐
問(wèn)題情境
在綜合與實(shí)踐課上,老師讓同學(xué)們以“大小不等的兩個(gè)正方形”為主題開(kāi)展數(shù)學(xué)活動(dòng),如圖1,現(xiàn)有一個(gè)邊長(zhǎng)為的正方形,點(diǎn)從對(duì)角線(xiàn)的點(diǎn)出發(fā)向點(diǎn)運(yùn)動(dòng),連接并延長(zhǎng)至點(diǎn),使,以為邊在右側(cè)作正方形,邊與射線(xiàn)交于點(diǎn).
操作發(fā)現(xiàn)
(1)點(diǎn)在運(yùn)動(dòng)過(guò)程中,判斷線(xiàn)段與線(xiàn)段之間的數(shù)量關(guān)系,并說(shuō)明理由;
實(shí)踐探究
(2)在點(diǎn)的運(yùn)動(dòng)過(guò)程中,某時(shí)刻正方形與正方形重疊的四邊形的面積是,求此時(shí)的長(zhǎng);
探究拓廣
(3)請(qǐng)借助備用圖2,探究當(dāng)點(diǎn)不與點(diǎn),重合時(shí),線(xiàn)段,與之間存在的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖7,在四邊形ABCD中,AB=BC,∠ABC=60°,E是CD邊上一點(diǎn),連接BE,以BE為一邊作等邊三角形BEF.請(qǐng)用直尺在圖中連接一條線(xiàn)段,使圖中存在經(jīng)過(guò)旋轉(zhuǎn)可完全重合的兩個(gè)三角形,并說(shuō)明這兩個(gè)三角形經(jīng)過(guò)什么樣的旋轉(zhuǎn)可重合.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y=x2+4x+3.
(1)求出該拋物線(xiàn)對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo).
(2)在所給的平面直角坐標(biāo)系中用描點(diǎn)法畫(huà)出這條拋物線(xiàn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com