【題目】初中生對待學(xué)習(xí)的態(tài)度一直是教育工作者關(guān)注的問題之一,為此蓬溪縣教體局教研室對我縣部分學(xué)校的九年級學(xué)生對待學(xué)習(xí)的態(tài)度進行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了______名學(xué)生;
(2)將圖①補充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查的結(jié)果,請你估計我縣初三6000名學(xué)生中有多少名學(xué)生學(xué)習(xí)態(tài)度達標(達標包括A級和B級)?
【答案】(1)200;(2)圖見解析;(3);(4)5100
【解析】
(1)根據(jù)B級人數(shù)是120,所占的比例是60%,據(jù)此即可求得總?cè)藬?shù);
(2)由(1)可知:C級人數(shù)為:200-120-50=30人,將圖1補充完整即可;
(3)利用360°乘以C級所占的百分比即可求解;
(4)利用總?cè)藬?shù)6000乘以學(xué)習(xí)態(tài)度達標的人數(shù)所占的比例即可求解.
(1)通過對比條形統(tǒng)計圖和扇形統(tǒng)計圖可知:學(xué)習(xí)態(tài)度層級為B級的有120人,占60%,調(diào)查的總?cè)藬?shù)是:120÷60%=200(人),
故答案是:200;
(2)C級人數(shù):200-120-50=30(人),
條形統(tǒng)計圖如圖所示:
(3)C級所占的圓心角是:360°×(1-60%-25%)=54°;
(4)學(xué)習(xí)態(tài)度達標的人數(shù)是:6000×(25%+60%)=5100(人).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸,軸分別交于兩點,與反比例函數(shù)交于點點的坐標為軸于點.
(1)點的坐標為 ;
(2)若點為的中點,求反比例函數(shù)的解析式;
(3)在(2)條件下,以為邊向右作正方形交于點直接寫出的周長與的周長的比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,交BC于點D,過點 D作DE⊥AC,垂足為E.
(1)求證:DE是⊙O的切線.
(2)若⊙O的半徑為2,∠A=60°,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y =﹣4x﹣4的圖像與x軸、y軸分別交于A、C兩點,拋物線y=的圖像經(jīng)過A、C兩點,且與x軸交于點B.
(1)求拋物線的函數(shù)表達式;
(2)在拋物線的對稱軸上找一點E,使點E到點A的距離與到點C的距離之和最小,求出此點E的坐標;
(3)作直線MN平行于x軸,分別交線段AC、BC于點M、N.問在x軸上是否存在點P,使得△PMN是等腰直角三角形?如果存在,求出所有滿足條件的P點的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=分別交x軸、y軸于點A和點A1,過點A1作A1B1⊥l,交x軸于點B1,過點B1作B1A2⊥x軸,交直線l于點A2;過點A2作A2B2⊥l,交x軸于點B2,過點B2作B2A3⊥x軸,交直線l于點A3;依此規(guī)律...若圖中陰影△A1OB1的面積為S1,陰影△A2B1B2的面積S2,陰影△A3B2B3的面積S3...,則Sn=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(,4),B(3,m)是直線AB與反比例函數(shù)(x>0)圖象的兩個交點.AC⊥x軸,垂足為點C,已知D(0,1),連接AD,BD,BC.
(1)求直線AB的表達式;
(2)△ABC和△ABD的面積分別為S1,S2,求S2-S1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】植樹節(jié)來臨之際,學(xué)校準備購進一批樹苗,已知2棵甲種樹苗和5棵乙種樹苗共需113元;3棵甲種樹苗和2棵乙種樹苗共需87元.
(1)求一棵甲種樹苗和一棵乙種樹苗的售價各是多少元?
(2)學(xué)校準備購進這兩種樹苗共100棵,并且乙種樹苗的數(shù)量不多于甲種樹苗數(shù)量的2倍,請設(shè)計出最省錢的購買方案,并求出此時的總費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在線段BC上有兩點E,F,在線段CB的異側(cè)有兩點A,D,滿足AB=CD,AE=DF,CE=BF,連接AF;
(1)連接DE,求證:四邊形AEDF是平行四邊形;
(2)若∠B=40°,∠DFC=30°,當(dāng)AF平分∠BAE時,求∠BAF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com