【題目】如圖,一次函數(shù)y =4x4的圖像與x軸、y軸分別交于AC兩點(diǎn),拋物線y=的圖像經(jīng)過(guò)A、C兩點(diǎn),且與x軸交于點(diǎn)B

1)求拋物線的函數(shù)表達(dá)式;

2)在拋物線的對(duì)稱軸上找一點(diǎn)E,使點(diǎn)E到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出此點(diǎn)E的坐標(biāo);

3)作直線MN平行于x軸,分別交線段ACBC于點(diǎn)MN.問(wèn)在x軸上是否存在點(diǎn)P,使得△PMN是等腰直角三角形?如果存在,求出所有滿足條件的P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

【答案】(1);(2)E;(3)

【解析】

1)求出一次函數(shù)y =4x4與坐標(biāo)軸交點(diǎn)A、C的坐標(biāo),代入拋物線解析式進(jìn)行求解即可;

(2)點(diǎn)A,點(diǎn)B關(guān)于拋物線對(duì)稱軸x=1對(duì)稱,當(dāng)B、E、C三點(diǎn)共線時(shí),點(diǎn)E到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,令y=0求出點(diǎn)B的坐標(biāo),用待定系數(shù)法求出BC解析式,BC與對(duì)稱軸的交點(diǎn)即為E點(diǎn);

(3)以直角頂點(diǎn)進(jìn)行分類,分3種情況,設(shè)MN的縱坐標(biāo)為a,表示出相應(yīng)線段,再根據(jù)等腰直角三角形的性質(zhì)進(jìn)行求解即可.

解:(1)∵一次函數(shù)y=4x4的圖象與x軸、y軸分別交于AC兩點(diǎn),

A (﹣10),C 0,﹣4),

A (﹣10),C 0,﹣4)代入

,解得 ,

2)∵=,

對(duì)稱軸是直線x=1

A, B關(guān)于直線x=1對(duì)稱

∴直線BC與對(duì)稱軸直線x=1的交點(diǎn)即為E點(diǎn)

此時(shí)點(diǎn)E到點(diǎn)A的距離與到點(diǎn)C的距離之和最。

y=0代入,

解得,,

B,∵C,

易求直線CB的解析式為

x=1代入,得y=,

E,

3)∵DPAB

設(shè)M、N的縱坐標(biāo)為a,

AC所在直線的解析式為y=4x4, BC所在直線的解析式為:,

M ,N,

①當(dāng)∠PMN=90°,MN=a+4PM=a,因?yàn)槭堑妊苯侨切危瑒t﹣a=a+4 a=2 P的橫坐標(biāo)為,

P點(diǎn)坐標(biāo)為

②當(dāng)∠PNM=90°,PN=MN,同上,a=2,則P的橫坐標(biāo)為,

P點(diǎn)坐標(biāo)為

③當(dāng)∠MPN=90°,作MN的中點(diǎn)Q,連接PQ,則PQ=a,

PM=PN,∴PQMN,則MN=2PQ,即:a+4=2a

解得:a=,

點(diǎn)P的橫坐標(biāo)為 ,

P點(diǎn)的坐標(biāo)為

綜合上述P坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線k為常數(shù),且)與直線交于兩點(diǎn).

1)求kb的值;

2)如圖,直線ABx軸于點(diǎn)C,交y軸于點(diǎn)D,若點(diǎn)ECD的中點(diǎn),求BOE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,點(diǎn)MBA的延長(zhǎng)線上.

1)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(尺規(guī)作圖,保留作圖痕跡,不要求寫作法和證明);

①作∠MAC的平分線AN;

②在AN上截取AD=BC,連結(jié)CD

2)在(1)的條件下,判斷四邊形ABCD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)活動(dòng)課上,陳老師布置了一道題目:如圖,你能用一張銳角三角形紙片ABC折出一個(gè)以∠A為內(nèi)角的菱形嗎?

悅悅的折法如下:

第一步,折出A的平分線,交BC于點(diǎn)D

第二步,折出AD的垂直平分線,分別交ABAC于點(diǎn)E、F,把紙片展平.

第三步,折出DE、DF,得到四邊形AE

請(qǐng)根據(jù)悅悅的折法在圖中畫出對(duì)應(yīng)的圖形,并證明四邊形AEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,BPC是等邊三角形,BP、CP的延長(zhǎng)線分別交AD于點(diǎn)E、F,連結(jié)BD、DP,BDCF相交于點(diǎn)H.給出下列結(jié)論:

①△ABE≌△DCF;PDF=15°;,其中正確的結(jié)論有(  

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】初中生對(duì)待學(xué)習(xí)的態(tài)度一直是教育工作者關(guān)注的問(wèn)題之一,為此蓬溪縣教體局教研室對(duì)我縣部分學(xué)校的九年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):對(duì)學(xué)習(xí)很感興趣;B級(jí):對(duì)學(xué)習(xí)較感興趣;C級(jí):對(duì)學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:

(1)此次抽樣調(diào)查中,共調(diào)查了______名學(xué)生;

(2)將圖①補(bǔ)充完整;

(3)求出圖②中C級(jí)所占的圓心角的度數(shù);

(4)根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)你估計(jì)我縣初三6000名學(xué)生中有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種蔬菜的銷售單價(jià)y1與銷售月份x之間的關(guān)系如圖1所示,成本y2與銷售月份x之間的關(guān)系如圖2所示.

(1)已知6月份這種蔬菜的成本最低,此時(shí)出售每干克的收益是多少元?(收益=售價(jià)-成本)

(2)分別求出y1、y2x之間的函數(shù)關(guān)系式;

(3)哪個(gè)月出售這種蔬菜,每千克的收益最大?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,點(diǎn)D是BC邊上的一動(dòng)點(diǎn)(不與B、C重合),∠ADE=∠B=∠α,DE交AB于點(diǎn)E,且tan∠α=0.75,有以下的結(jié)論:

①△DBE∽△ACD;②△ADE∽△ACD;③△BDE為直角三角形時(shí),BD為8或3.5;

④0<BE≤5.其中正確的結(jié)論是_______(填入正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,圓內(nèi)接四邊形ABCD,ADBC,AB是⊙O的直徑.

1)求證:ABCD;

2)如圖2,連接OD,作∠CBE2ABD,BEDC的延長(zhǎng)線于點(diǎn)E,若AB6AD2,求CE的長(zhǎng);

3)如圖3,延長(zhǎng)OB使得BHOBDF是⊙O的直徑,連接FH,若BDFH,求證:FH是⊙O的切線.

查看答案和解析>>

同步練習(xí)冊(cè)答案