【題目】為備戰(zhàn)奧運(yùn)會(huì),中國(guó)女排的姑娘們刻苦訓(xùn)練,為國(guó)爭(zhēng)光,如圖,已知排球場(chǎng)的長(zhǎng)度 OD 18 米,位于球場(chǎng)中線處球網(wǎng)的高度 AB 2.43 米,一隊(duì)員站在點(diǎn) O 處發(fā)球,排球從點(diǎn) O 的正上方 1.8 米的 C 點(diǎn)向正前方飛出,當(dāng)排球運(yùn)行至離點(diǎn) O 的水平距離 OE 7 米時(shí),到達(dá)最高點(diǎn) G,建立如圖所示的平面直角坐標(biāo)系.

1)當(dāng)球上升的最大高度為 3.2 米時(shí),求排球飛行的高度 y(單位:米)與水平距離 x(單位:米)的函數(shù)關(guān)系式.(不要求寫出自變量 x 的取值范圍)

2)在(1)的條件下,對(duì)方距球網(wǎng) 0.5 米的點(diǎn) F 處有一隊(duì)員,她起跳后的最大高度為 3.1米,問這次她是否可以攔網(wǎng)成功?請(qǐng)通過計(jì)算說明.(不考慮排球的大小)

【答案】1,(2)攔網(wǎng)成功.

【解析】

1)根據(jù)此時(shí)拋物線頂點(diǎn)坐標(biāo)為(7,3.2),設(shè)解析式為,再將點(diǎn)C坐標(biāo)代入即可求得; 2)由(1)中解析式求得x=9.5時(shí)y的值,與他起跳后的最大高度為3.1米比較即可得;

解:(1)根據(jù)題意知此時(shí)拋物線的頂點(diǎn)G的坐標(biāo)為(7,3.2),

設(shè)拋物線解析式為 將點(diǎn)C0,1.8)代入,

得:, 解得:

∴排球飛行的高度y與水平距離x的函數(shù)關(guān)系式為;

2)由題意當(dāng)x=9.5時(shí), 3.023.1,

故這次她可以攔網(wǎng)成功;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和小亮利用三張卡片做游戲,卡片上分別寫有A,B,B.這些卡片除字母外完全相同,從中隨機(jī)摸出一張,記下字母后放回,充分洗勻后,再?gòu)闹忻鲆粡,如果兩次摸到卡片字母相同則小明勝,否則小亮勝,這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)說明現(xiàn)由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016廣東省深圳市)荔枝是深圳的特色水果,小明的媽媽先購(gòu)買了2千克桂味和3千克糯米糍,共花費(fèi)90元;后又購(gòu)買了1千克桂味和2千克糯米糍,共花費(fèi)55元.(每次兩種荔枝的售價(jià)都不變)

(1)求桂味和糯米糍的售價(jià)分別是每千克多少元;

(2)如果還需購(gòu)買兩種荔枝共12千克,要求糯米糍的數(shù)量不少于桂味數(shù)量的2倍,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買方案,使所需總費(fèi)用最低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=(x-m)2-(x-m),其中m是常數(shù).

1)求證:不論m為何值,該拋物線與x軸一定有兩個(gè)公共點(diǎn).

2)若該拋物線的對(duì)稱軸為直線,求該拋物線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面中給定的一個(gè)圖形及一點(diǎn) P,若圖形上存在兩個(gè)點(diǎn) A、B,使得PAB 是邊長(zhǎng)為 2 的等邊三角形,則稱點(diǎn) P 是該圖形的一個(gè)“美好點(diǎn)”.

1)若將 x 軸記作直線 l,下列函數(shù)的圖象上存在直線 l 的“美好點(diǎn)”的是 (只填選項(xiàng))

A.正比例函數(shù) y x

B.反比例函數(shù) y

C.二次函數(shù) y x 2

2)在平面直角坐標(biāo)系 xOy 中,若點(diǎn) M (n, 0) , N (0, n) ,其中n0 ,⊙O 的半徑為 r

①若r 2,⊙O 上恰好存在 2 個(gè)直線 MN 的“美好點(diǎn)”,求 n 的取值范圍;

②若n4 ,線段 MN 上存在⊙O 的“美好點(diǎn)”,直接寫出 r 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上,老師提出了這樣一個(gè)問題:如圖,己知.求作:過三點(diǎn)的圓.

小蕓是這樣思考的:圓心確定一個(gè)圈的位置,半徑確定一個(gè)圓的大小要作同時(shí)經(jīng)過幾個(gè)定點(diǎn)的圓,就是要先找到一個(gè)點(diǎn),使得這個(gè)點(diǎn)到這幾個(gè)定點(diǎn)的距離都相等.這樣既定了圓心,又定了半徑,就能畫出滿足條件的圓了.

小智聽了小蕓的分析后,按照這個(gè)思路很快就畫出了一個(gè)過三點(diǎn)的圓.

請(qǐng)你在答題紙上而出這個(gè)圓,并寫出作圖的主要依據(jù),

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是邊AB上的高.

1)求證:△ABC∽△CBD;

2)如果AC=4,BC=3,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1為等腰三角形,是底邊的中點(diǎn),腰相切于點(diǎn),底于點(diǎn),

1)求證:的切線;

2)如圖2,連接,于點(diǎn),點(diǎn)是弧的中點(diǎn),若,,求的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果拋物線的頂點(diǎn)在拋物線上,同時(shí),拋物線的頂點(diǎn)在拋物線上,那么我們稱拋物線關(guān)聯(lián).

1)已知拋物線,請(qǐng)判斷拋物線 與拋物線是否關(guān)聯(lián),并說明理由.

2)拋物線,動(dòng)點(diǎn)的坐標(biāo)為,將拋物線繞點(diǎn)旋轉(zhuǎn)180°得到拋物線,若拋物線關(guān)聯(lián),求拋物線的解析式.

3)點(diǎn)為拋物線的頂點(diǎn),點(diǎn)為拋物線關(guān)聯(lián)的拋物線的頂點(diǎn),是否存在以為斜邊的等腰直角三角形ABC,使其直角頂點(diǎn)在直線上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案