【題目】如圖,已知四邊形ABCD是邊長為4的正方形,ECD上一點,且DE1,F為射線BC上一動點,過點EEGAF于點P,交直線AB于點G.則下列結論中:①AFEG;②若∠BAF=∠PCF,則PCPE;③當∠CPF45°時,BF1;④PC的最小值為2.其中正確的有(

A.1B.2C.3D.4

【答案】C

【解析】

連接AE,過EEHABH,則EHBC,根據全等三角形的判定和性質定理即可得到AFEG,故①正確;根據平行線的性質和等腰三角形的性質即可得到PEPC;故②正確;連接EF,推出點EP,F,C四點共圓,根據圓周角定理得到∠FEC=∠FPC45°,于是得到BFDE1,故③正確;取AE 的中點O,連接POCO,根據直角三角形的性質得到AOPOAE,推出點P在以O為圓心,AE為直徑的圓上,當OC、P共線時,CP的值最小,根據三角形的三邊關系得到PC≥OCOP,根據勾股定理即可得到結論.

連接AE,過EEHABH,

EHBC

ABBC,

EHAB

EGAF,

∴∠BAF+AGP=∠BAF+AFB90°

∴∠EGH=∠AFB,

∵∠B=∠EHG90°,

∴△HEG≌△ABFAAS),

AFEG,故①正確;

ABCD,

∴∠AGE=∠CEG,

∵∠BAF+AGP90°,∠PCF+PCE90°,

∵∠BAF=∠PCF,

∴∠AGE=∠PCE,

∴∠PEC=∠PCE,

PEPC;故②正確;

連接EF,

∵∠EPF=∠FCE90°

∴點E,P,F,C四點共圓,

∴∠FEC=∠FPC45°,

ECFC,

BFDE1,

故③正確;

AE 的中點O,連接PO,CO,

AOPOAE,

∵∠APE90°,

∴點P在以O為圓心,AE為直徑的圓上,

∴當OC、P共線時,CP的值最小,

PC≥OCOP,

PC的最小值=OCOPOCAE,

OCAE,

PC的最小值為,故④錯誤,

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A(1,1)關于直線y =kx的對稱點恰好落在x軸的正半軸上,則k的值是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,C=90°,點DAB的中點,ACBC

(1)試用無刻度的直尺和圓規(guī),在BC上作一點E,使得直線ED平分ABC的周長;(不要求寫作法,但要保留作圖痕跡)

(2)(1)的條件下,若DERtABC面積為12兩部分,請?zhí)骄?/span>ACBC的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)閱讀理解

如圖,點,在反比例函數(shù)的圖象上,連接,取線段的中點.分別過點,軸的垂線,垂足為,,交反比例函數(shù)的圖象于點.點,的橫坐標分別為,.小紅通過觀察反比例函數(shù)的圖象,并運用幾何知識得出結論:AE+BG=2CF,CF>DF,由此得出一個關于,,之間數(shù)量關系的命題:若,則______

(2)證明命題

小東認為:可以通過,則的思路證明上述命題.

小晴認為:可以通過,,且,則的思路證明上述命題.

請你選擇一種方法證明(1)中的命題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知平面直角坐標系,兩點的坐標分別為

1)若軸上的一個動點,則當_______時,的周長最短;

2)若軸上的兩個動點,則當_______時,四邊形的周長最短;

3)設分別為軸和軸上的動點,請問:是否存在這樣的點, 使四邊形的周長最短?若存在,請求出,_________,________(不必寫解答過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的弦,點C是弧AB的中點,D是弦AB上一動點,且不與A、B重合,CD的延長線交于⊙OE,連接AE、BE,過點AAFBC,垂足為F,∠ABC30°

1)求證:AF是⊙O的切線;

2)若BC6CD3,則DE的長為   ;

3)當點D在弦AB上運動時,的值是否發(fā)生變化?如果變化,請寫出其變化范圍;如果不變,請求出其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了提高學生的綜合素質,成立了以下社團:.機器人,.圍棋,.羽毛球,.電影配音.每人只能加入一個社團.為了解學生參加社團的情況,從加社團的學生中隨機抽取了部分學生進行調查,并將調查結果繪制成如下兩幅不完整的統(tǒng)計圖,其中圖所占扇形的圓心角為

根據以上信息,解答下列問題:

這次被調查的學生共有   人;

請你將條形統(tǒng)計圖補充完整;

若該校共有學生加入了社團,請你估計這名學生中有多少人參加了羽毛球社團;

在機器人社團活動中,由于甲、乙、丙、丁四人平時的表現(xiàn)優(yōu)秀,現(xiàn)決定從這四人中任選兩名參加機器人大賽.用樹狀圖或列表法求恰好選中甲、乙兩位同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一座隧道的截面由拋物線和長方形構成,長方形的長為8m,寬為2m,隧道最高點P位于AB的中央且距地面6m,建立如圖所示的坐標系:

1)求拋物線的解析式;

2)一輛貨車高4m,寬2m,能否從該隧道內通過,為什么?

3)如果隧道內設雙行道,那么這輛貨車是否可以順利通過,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】忽如一夜春風來,千樹萬樹梨花開.在清明假期期間,小梅和小北姐弟二人準備一起去樂陵大孫鄉(xiāng)采摘園賞梨花,但因家中臨時有事,必須留下一人在家,于是姐弟二人采用游戲的方式來確定誰去賞梨花.游戲規(guī)則是:在不透明的口袋中分別放入2個白色和1個黃色的乒乓球,它們除顏色外其余都相同.游戲時先由小梅從口袋中任意摸出1個乒乓球記下顏色后放回并搖勻,再由小北從口袋中摸出1個乒乓球,記下顏色.如果姐弟二人摸到的乒乓球顏色相同,則小梅贏,否則小北贏.則小北贏的概率是(

A.B.C.D.

查看答案和解析>>

同步練習冊答案