【題目】如圖,已知四邊形ABCD是邊長為4的正方形,E為CD上一點,且DE=1,F為射線BC上一動點,過點E作EG⊥AF于點P,交直線AB于點G.則下列結論中:①AF=EG;②若∠BAF=∠PCF,則PC=PE;③當∠CPF=45°時,BF=1;④PC的最小值為﹣2.其中正確的有( )
A.1個B.2個C.3個D.4個
【答案】C
【解析】
連接AE,過E作EH⊥AB于H,則EH=BC,根據全等三角形的判定和性質定理即可得到AF=EG,故①正確;根據平行線的性質和等腰三角形的性質即可得到PE=PC;故②正確;連接EF,推出點E,P,F,C四點共圓,根據圓周角定理得到∠FEC=∠FPC=45°,于是得到BF=DE=1,故③正確;取AE 的中點O,連接PO,CO,根據直角三角形的性質得到AO=PO=AE,推出點P在以O為圓心,AE為直徑的圓上,當O、C、P共線時,CP的值最小,根據三角形的三邊關系得到PC≥OC﹣OP,根據勾股定理即可得到結論.
連接AE,過E作EH⊥AB于H,
則EH=BC,
∵AB=BC,
∴EH=AB,
∵EG⊥AF,
∴∠BAF+∠AGP=∠BAF+∠AFB=90°,
∴∠EGH=∠AFB,
∵∠B=∠EHG=90°,
∴△HEG≌△ABF(AAS),
∴AF=EG,故①正確;
∵AB∥CD,
∴∠AGE=∠CEG,
∵∠BAF+∠AGP=90°,∠PCF+∠PCE=90°,
∵∠BAF=∠PCF,
∴∠AGE=∠PCE,
∴∠PEC=∠PCE,
∴PE=PC;故②正確;
連接EF,
∵∠EPF=∠FCE=90°,
∴點E,P,F,C四點共圓,
∴∠FEC=∠FPC=45°,
∴EC=FC,
∴BF=DE=1,
故③正確;
取AE 的中點O,連接PO,CO,
∴AO=PO=AE,
∵∠APE=90°,
∴點P在以O為圓心,AE為直徑的圓上,
∴當O、C、P共線時,CP的值最小,
∵PC≥OC﹣OP,
∴PC的最小值=OC﹣OP=OC﹣AE,
∵OC==,AE==,
∴PC的最小值為﹣,故④錯誤,
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點D是AB的中點,AC<BC.
(1)試用無刻度的直尺和圓規(guī),在BC上作一點E,使得直線ED平分ABC的周長;(不要求寫作法,但要保留作圖痕跡).
(2)在(1)的條件下,若DE分Rt△ABC面積為1﹕2兩部分,請?zhí)骄?/span>AC與BC的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)閱讀理解
如圖,點,在反比例函數(shù)的圖象上,連接,取線段的中點.分別過點,,作軸的垂線,垂足為,,,交反比例函數(shù)的圖象于點.點,,的橫坐標分別為,,.小紅通過觀察反比例函數(shù)的圖象,并運用幾何知識得出結論:AE+BG=2CF,CF>DF,由此得出一個關于,,之間數(shù)量關系的命題:若,則______.
(2)證明命題
小東認為:可以通過“若,則”的思路證明上述命題.
小晴認為:可以通過“若,,且,則”的思路證明上述命題.
請你選擇一種方法證明(1)中的命題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平面直角坐標系,兩點的坐標分別為.
(1)若是軸上的一個動點,則當_______時,的周長最短;
(2)若是軸上的兩個動點,則當_______時,四邊形的周長最短;
(3)設分別為軸和軸上的動點,請問:是否存在這樣的點, 使四邊形的周長最短?若存在,請求出,_________,________(不必寫解答過程);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的弦,點C是弧AB的中點,D是弦AB上一動點,且不與A、B重合,CD的延長線交于⊙O點E,連接AE、BE,過點A作AF⊥BC,垂足為F,∠ABC=30°.
(1)求證:AF是⊙O的切線;
(2)若BC=6,CD=3,則DE的長為 ;
(3)當點D在弦AB上運動時,的值是否發(fā)生變化?如果變化,請寫出其變化范圍;如果不變,請求出其值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了提高學生的綜合素質,成立了以下社團:.機器人,.圍棋,.羽毛球,.電影配音.每人只能加入一個社團.為了解學生參加社團的情況,從加社團的學生中隨機抽取了部分學生進行調查,并將調查結果繪制成如下兩幅不完整的統(tǒng)計圖,其中圖中所占扇形的圓心角為.
根據以上信息,解答下列問題:
這次被調查的學生共有 人;
請你將條形統(tǒng)計圖補充完整;
若該校共有學生加入了社團,請你估計這名學生中有多少人參加了羽毛球社團;
在機器人社團活動中,由于甲、乙、丙、丁四人平時的表現(xiàn)優(yōu)秀,現(xiàn)決定從這四人中任選兩名參加機器人大賽.用樹狀圖或列表法求恰好選中甲、乙兩位同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一座隧道的截面由拋物線和長方形構成,長方形的長為8m,寬為2m,隧道最高點P位于AB的中央且距地面6m,建立如圖所示的坐標系:
(1)求拋物線的解析式;
(2)一輛貨車高4m,寬2m,能否從該隧道內通過,為什么?
(3)如果隧道內設雙行道,那么這輛貨車是否可以順利通過,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】忽如一夜春風來,千樹萬樹梨花開.在清明假期期間,小梅和小北姐弟二人準備一起去樂陵大孫鄉(xiāng)采摘園賞梨花,但因家中臨時有事,必須留下一人在家,于是姐弟二人采用游戲的方式來確定誰去賞梨花.游戲規(guī)則是:在不透明的口袋中分別放入2個白色和1個黃色的乒乓球,它們除顏色外其余都相同.游戲時先由小梅從口袋中任意摸出1個乒乓球記下顏色后放回并搖勻,再由小北從口袋中摸出1個乒乓球,記下顏色.如果姐弟二人摸到的乒乓球顏色相同,則小梅贏,否則小北贏.則小北贏的概率是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com