【題目】(1)閱讀理解

如圖,點,在反比例函數(shù)的圖象上,連接,取線段的中點.分別過點軸的垂線,垂足為,,交反比例函數(shù)的圖象于點.點,的橫坐標分別為,,.小紅通過觀察反比例函數(shù)的圖象,并運用幾何知識得出結論:AE+BG=2CF,CF>DF,由此得出一個關于之間數(shù)量關系的命題:若,則______

(2)證明命題

小東認為:可以通過,則的思路證明上述命題.

小晴認為:可以通過,且,則的思路證明上述命題.

請你選擇一種方法證明(1)中的命題.

【答案】(1);(2)證明見解析.

【解析】

1)求出AEBG,DF,利用AE+BG=2CF,可得

2)利用求差法比較大小.

(1),,,,,

.

(2),

,

,

,

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為 6 的等邊△ABC 中,D AC 上一點,AD=2,P BD 上一點,連接 CP,以 CP 邊,在 PC 的右側作等邊△CPQ,連接 AQ BD 延長線于 E,當△CPQ 面積最小時,QE=____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1是我校聞瀾閣前樓梯原設計稿的側面圖,,,樓梯的坡比為1,為了增加樓梯的舒適度,將其改造成如圖2,測量得,的中點,過點分別作的角平分線于點,于點,其中為樓梯,為平地,則平地的長度為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,P、Q分別是BC、AC上的點,作PR⊥AB,PS⊥AC,垂足分別為R、S,若AQ=PQ,PR=PS,則結論:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正確的有( )

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù) y的圖象如圖所示,則二次函數(shù) y =ax 22x和一次函數(shù) ybx+a 在同一平面直角坐標系中的圖象可能是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是規(guī)格為的正方形網格,請在所給網格中按下列要求操作:

1)請在網格中建立平面直角坐標系,使點坐標為,點坐標為;

2)在第二象限內的格點上畫一點,使點與線段組成一個以為底的等腰三角形,且腰長是無理數(shù), 點坐標是________,的周長是_________(結果保留根號);

3)畫出以點為旋轉中心、旋轉后的,連結,試說出四邊形是何特殊四邊形, 并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是邊長為4的正方形,ECD上一點,且DE1,F為射線BC上一動點,過點EEGAF于點P,交直線AB于點G.則下列結論中:①AFEG;②若∠BAF=∠PCF,則PCPE;③當∠CPF45°時,BF1;④PC的最小值為2.其中正確的有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中,,點上,且是以為底的等腰直角三角形,若,則_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)yx0)的圖象與直線ymx交于點C,直線ly4分別交兩函數(shù)圖象于點A1,4)和點B,過點BBDl交反比例函數(shù)圖象于點 D

1)求反比例函數(shù)的解析式;

2)當BD2AB時,求點B的坐標;

3)在(2)的條件下,直接寫出不等式mx的解集.

查看答案和解析>>

同步練習冊答案