【題目】如圖,點O為線段AD外一點,M、C、B、N為AD上任意四點,連接OM、OC、OB、ON,下列結論不正確的是( )
A. 以O為頂點的角共有15個
B. 若OM平分∠AOC,ON平分∠BOD,∠AOD=5∠COB,則∠MON=(∠MOC+∠BON)
C. 若M為AB中點,N為CD中點,則MN=(AD-CB)
D. 若MC=CB,MN=ND,則CD=2CN
【答案】D
【解析】
A.以O為頂點的角的射線一共有6條射線,所以角的個數(shù)為6×(6-1)÷2=15個角,由此得出答案即可;
B.根據(jù)角平分線的定義和角的和差即可得到結論,根據(jù)已知條件列方程即可得到結論;
C. 根據(jù)線段的和差,可得MN=MB-CB+CN,根據(jù)線段中點的性質,可得MB,CB,CN的關系,再根據(jù)線段的和差,可得答案;
D. 由中點可得線段相等,進而可得出線段之間的數(shù)量關系.
解:A.6×(6-1)÷2=15個角,故正確;
B. ∵∠AOD=5∠COB,
∴設∠COB=x°,則∠AOD=5x°,
∴∠AOC+∠BOD=5x°- x°=4x°,
∵OM平分∠AOC,ON平分∠BOD,
∴∠MOC+∠BON=2x°,
∴∠MON=2x°+ x°=3 x°,
∴∠MON=(∠MOC+∠BON),
故正確;
C. ∵M為AB中點,N為CD中點,
∴MB=AB,CN=CD,
∴MN=MB-CB+CN
=AB-CB+CD
=(AB+CD)-CB
=(AD+CB-2CD)
=(AD-CB),
故正確;
D. ∵MC=CB,MN=ND
∴CD=MD-MC=2MN-MC,
得不出CD=2CN,
故錯誤,
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+ x+c的圖象與y軸交于點A(0,4),與x軸交于點B,C,點C的坐標為(8,0),連接AC.
(1)請直接寫出二次函數(shù)y=ax2+ x+c的表達式;
(2)判斷△ABC的形狀,并說明理由;
(3)若點N在線段BC上運動(不與點B、C重合),過點N作NM∥AC,交AB于點M,當△AMN面積最大時,求此時N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD的對角線交于點E,有AE=EC,BE=ED,以AB為直徑的⊙O過點E.
(1)求證:四邊形ABCD的是菱形;
(2)若CD的延長線與圓相切于點F,已知直徑AB=4,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于一次函數(shù)y=x+6,下列結論錯誤的是( )
A. 函數(shù)圖象與x軸交點坐標是(0,6) B. 函數(shù)值隨自變量的增大而增大
C. 函數(shù)圖象與x軸正方向成45°角 D. 函數(shù)圖象不經(jīng)過第四象限
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如: .我們稱使得成立的一對數(shù), 為“相伴數(shù)對”,記為.
(1)若是“相伴數(shù)對”,求的值;
(2)寫出一個“相伴數(shù)對” ,其中且;
(3)若是“相伴數(shù)對”,求代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知∠AOB內(nèi)部有3條射線OE、OC、OF
(1) 如圖1,若∠AOB = 90°,∠AOC = 30°,OE平分∠BOC,OF平分∠AOC,求∠EOF的度數(shù).
(2) 如圖2,若∠AOB = α,∠EOB = ∠COB,∠COF = ∠FOA,求∠EOF的度數(shù)(用含α的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等腰三角形ABC中,AB=AC=10,BC=12,D為BC邊上的任意一點,過點D分別作DE⊥AB,DF⊥AC,垂足分別為E,F,則DE+DF=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在平面直角坐標系xOy中,直線分別交x、y軸于點A、C,點B在x軸負半軸上,過點A作于點K,若,.
如圖1,求點B坐標;
如圖2,點P為AC延長線上一點,過點P作交直線BC于點Q,設點P的橫坐標為t,PQ長為d,求d與t的函數(shù)關系式不必寫出自變量t的取值范圍;
在的條件下,連接OK,過點P作軸于點H,點F為HB上一點,連接PF,點D在PF上,將點F沿x軸正方向平移個單位到點G,連接DG,交PH于點E,若,,,求點P坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com