【題目】隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生.為了解某小區(qū)居民使用共享單車的情況,某研究小組隨機(jī)采訪該小區(qū)的位居民,得到這位居民一周內(nèi)使用共享單車的次數(shù)分別為:,,,,,,

(1)這組數(shù)據(jù)的中位數(shù)是________,眾數(shù)是________;

(2)計(jì)算這位居民一周內(nèi)使用共享單車的平均次數(shù);

(3)若該小區(qū)有名居民,試估計(jì)該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).

【答案】(1)16,17;(2)這10位居民一周內(nèi)使用共享單車的平均次數(shù)是14次;(3)該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù)為2800次.

【解析】

(1)根據(jù)中位數(shù)和眾數(shù)的定義求解;(2)根據(jù)平均數(shù)公式求解;(3)用(2)結(jié)果估算總體情況.

解:(1)按照大小順序重新排列后,第5、第6個(gè)數(shù)分別是15和17,所以中位數(shù)是(15+17)÷2=16,17出現(xiàn)3次最多,所以眾數(shù)是17,

故答案是16,17;

(2)=14,

答:這10位居民一周內(nèi)使用共享單車的平均次數(shù)是14次;

(3)200×14=2800

答:該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù)為2800次.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個(gè)坡角為30°的斜坡上有一電線桿AB,當(dāng)太陽光與水平線成45°角時(shí),測(cè)得該桿在斜坡上的影長(zhǎng)BC20m.求電線桿AB的高(精確到0.1m,參考數(shù)值:≈1.73,≈1.41).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)經(jīng)過某種變換后得到點(diǎn),我們把點(diǎn)叫做點(diǎn)的終結(jié)點(diǎn).已知點(diǎn)的終結(jié)點(diǎn)為,點(diǎn)的終結(jié)點(diǎn)為,點(diǎn)的終結(jié)點(diǎn)為,這樣依次得到、、、,若點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,BC2.點(diǎn)P從點(diǎn)A出發(fā)沿沿射線AB1的速度運(yùn)動(dòng),過點(diǎn)PPEBC交射線AC于點(diǎn)E,同時(shí)點(diǎn)Q從點(diǎn)C出發(fā)沿BC的延長(zhǎng)線以1的速度運(yùn)動(dòng),連結(jié)BEEQ.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t.

1)求證:APE是等邊三角形;

2)直接寫出CE的長(zhǎng)(用含的代數(shù)式表示);

3)當(dāng)點(diǎn)P在邊AB上,且不與點(diǎn)A、B重合時(shí),求證:BPE≌△ECQ.

4)在不添加字母和連結(jié)其它線段的條件下,當(dāng)圖中等腰三角形的個(gè)數(shù)大于3時(shí),直接寫出t的值和對(duì)應(yīng)的等腰三角形的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋擲一枚均勻的骰子(各面上的點(diǎn)數(shù)分別為1﹣6點(diǎn))1次,落地后:

(1)朝上的點(diǎn)數(shù)有哪些結(jié)果?他們發(fā)生的可能性一樣嗎?

(2)朝上的點(diǎn)數(shù)是奇數(shù)與朝上的點(diǎn)數(shù)是偶數(shù),這兩個(gè)事件的發(fā)生可能性大小相等嗎?

(3)朝上的點(diǎn)數(shù)大于4與朝上的點(diǎn)數(shù)不大于4,這兩個(gè)事件的發(fā)生可能性大小相等嗎?如果不相等,那么哪一個(gè)可能性大一些?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,0),以線段OA為邊在第四象限內(nèi)作等邊三角形AOB,點(diǎn)Cx正半軸上一動(dòng)點(diǎn)(OC>1),連接BC,以線段BC為邊在第四象限內(nèi)作等邊CBD,連接DA并延長(zhǎng),交y軸于點(diǎn)E.

①△OBCABD全等嗎?判斷并證明你的結(jié)論;

②當(dāng)點(diǎn)C運(yùn)動(dòng)到什么位置時(shí),以A,E,C為頂點(diǎn)的三角形是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,∠ABC為銳角,ABBC,點(diǎn)EAD上的一點(diǎn),延長(zhǎng)CEF,連接BFAD于點(diǎn)G, 使∠FBCDCE

求證:∠DF;

在直線AD找一點(diǎn)P,使以點(diǎn)B、PC為頂點(diǎn)的三角形與以點(diǎn)C、D、P為頂點(diǎn)的三角形相似.(在原圖中標(biāo)出準(zhǔn)確P點(diǎn)的位置,必要時(shí)用直尺和圓規(guī)作出P點(diǎn),保留作圖的痕跡,不寫作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點(diǎn)B-2,0),點(diǎn)C8,0),與y軸交于點(diǎn)A

1)求二次函數(shù)y=ax2+bx+4的表達(dá)式;

2)連接AC,AB,若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B,C重合),過點(diǎn)NNM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時(shí),求N點(diǎn)的坐標(biāo);

3)連接OM,在(2)的結(jié)論下,求OMAC的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.動(dòng)點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)開始移動(dòng),點(diǎn)P的速度為1 cm/秒,點(diǎn)Q的速度為2 cm/秒,點(diǎn)Q移動(dòng)到點(diǎn)C后停止,點(diǎn)P也隨之停止運(yùn)動(dòng)下列時(shí)間瞬間中,能使△PBQ的面積為15cm 的是(

A. 2秒鐘 B. 3秒鐘 C. 4秒鐘 D. 5秒鐘

查看答案和解析>>

同步練習(xí)冊(cè)答案