【題目】某商場(chǎng)將進(jìn)貨價(jià)為40元的臺(tái)燈以50元的銷(xiāo)售價(jià)售出,平均每月能售出800個(gè).市場(chǎng)調(diào)研表明:當(dāng)銷(xiāo)售價(jià)每上漲1元時(shí),其銷(xiāo)售量就將減少10個(gè).設(shè)每個(gè)臺(tái)燈的銷(xiāo)售價(jià)上漲元.

(1) 試用含的代數(shù)式填空:

漲價(jià)后,每個(gè)臺(tái)燈的利潤(rùn)為 元;

漲價(jià)后,商場(chǎng)的臺(tái)燈平均每月的銷(xiāo)售量為 臺(tái);

(2) 如果商場(chǎng)要想銷(xiāo)售總利潤(rùn)平均每月達(dá)到20000元,商場(chǎng)經(jīng)理甲說(shuō)在原售價(jià)每臺(tái)50元的基礎(chǔ)上再上漲40元,可以完成任務(wù)”,商場(chǎng)經(jīng)理乙說(shuō)不用漲那么多,在原售價(jià)每臺(tái)50元的基礎(chǔ)上再上漲30元就可以了,試判斷經(jīng)理甲與乙的說(shuō)法是否正確,并說(shuō)明理由.

【答案】(1)①10+;②800-10;(2)甲、乙的說(shuō)法都對(duì).

【解析】

(1)①利潤(rùn)=售價(jià)-進(jìn)貨價(jià);

②根據(jù)當(dāng)臺(tái)燈的銷(xiāo)售單價(jià)每上漲1元時(shí),其銷(xiāo)售量就將減少10個(gè)進(jìn)行計(jì)算;

(2)根據(jù)平均每月能售出800個(gè)和銷(xiāo)售價(jià)每上漲1元時(shí),其銷(xiāo)售量就將減少10個(gè)之間的關(guān)系列出式子,再分兩種情況討論,求出每月的銷(xiāo)售利潤(rùn),再進(jìn)行比較即可.

解:(1)①漲價(jià)后,每個(gè)臺(tái)燈的利潤(rùn)為:50+a-40=10+a(元);

②漲價(jià)后,商場(chǎng)的臺(tái)燈平均每月的銷(xiāo)售量為:800-10a(臺(tái));

(2)甲、乙的說(shuō)法都對(duì),理由如下:

該商場(chǎng)臺(tái)燈的月銷(xiāo)售利潤(rùn)為:(10+a)(800-10a);

當(dāng)a=40時(shí),(10+a)(800-10a)=(10+40)(800-10×40)=20000(元);

當(dāng)a=30時(shí),(10+a)(800-10a)=(10+30)(800-10×30)=20000(元);

所以甲、乙的說(shuō)法都對(duì)

故答案為:(1)10+;800-10;(2)甲、乙的說(shuō)法都對(duì)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線(xiàn)相交于點(diǎn)G,過(guò)點(diǎn)GEFBCABE,交ACF,過(guò)點(diǎn)GGDACD,下列四個(gè)結(jié)論:

EFBE+CF;②∠BGC90°+A;③點(diǎn)G到△ABC各邊的距離相等;④設(shè)GDmAE+AFn,則SAEFmn.其中正確的結(jié)論有(  )

A.①②④B.①③④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)三位數(shù),十位數(shù)字等于百位數(shù)字與個(gè)位數(shù)字的平均數(shù),我們稱(chēng)這個(gè)三位數(shù)為“順子數(shù)”,例如:630,123.

如果一個(gè)三位數(shù),十位數(shù)字等于百位數(shù)字與個(gè)位數(shù)字的積的算術(shù)平方根,我們稱(chēng)這個(gè)三位數(shù)為“和諧數(shù)”,例如:139,124.

(1)若三位數(shù)是“順子數(shù)”,且各位數(shù)字之和大于7小于10,且百位數(shù)字a使得一元二次方程(a﹣5)x2+2ax+a﹣6=0有實(shí)數(shù)根,求這個(gè)“順子數(shù)”;

(2)若三位數(shù)既是“順子數(shù)”又是“和諧數(shù)”,請(qǐng)?zhí)剿鱝,b,c三者的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知外切于,的外公切線(xiàn),,為切點(diǎn),若,,則的距離是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=4cm, BC=12cm.點(diǎn)P從點(diǎn)C處出發(fā)以1cm/s向A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從B點(diǎn)出發(fā)以2cm/s向C點(diǎn)勻速移動(dòng),若一個(gè)點(diǎn)到達(dá)目的停止運(yùn)動(dòng)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).運(yùn)動(dòng)時(shí)間為t秒;

(1)用含有t的代數(shù)式表示BQ、CP的長(zhǎng);

(2)寫(xiě)出t的取值范圍;

(3)用含有t的代數(shù)式 表示Rt△PCQ和四邊形APQB的面積;

(4)當(dāng)P、Q處在什么位置時(shí),四邊形PQBA的面積最小,并求這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017山東日照已知拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線(xiàn)x=2,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(4,0),其部分圖象如圖所示,下列結(jié)論:

①拋物線(xiàn)過(guò)原點(diǎn);

4a+b+c=0;

a﹣b+c<0;

④拋物線(xiàn)的頂點(diǎn)坐標(biāo)為(2,b);

⑤當(dāng)x<2時(shí),yx增大而增大.

其中結(jié)論正確的是(

A. ①②③ B. ③④⑤ C. ①②④ D. ①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD=BC=12,AB=CD,BD=15,點(diǎn)ED點(diǎn)出發(fā),以每秒4個(gè)單位的速度沿D→A→D勻速移動(dòng),點(diǎn)F從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度沿CB向點(diǎn)B作勻速移動(dòng),點(diǎn)G從點(diǎn)B出發(fā)沿BD向點(diǎn)D勻速移動(dòng),三個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)有一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),其余兩點(diǎn)也隨之停止運(yùn)動(dòng),假設(shè)移動(dòng)時(shí)間為t秒.

1)試說(shuō)明:AD∥BC

2)在移動(dòng)過(guò)程中,小明發(fā)現(xiàn)有△DEG△BFG全等的情況出現(xiàn),請(qǐng)你探究這樣的情況會(huì)出現(xiàn)幾次?并分別求出此時(shí)的移動(dòng)時(shí)間tG點(diǎn)的移動(dòng)距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,ACB和DCE都是等腰直角三角形,∠ACB=∠DCE=90,連接AE、BD交于點(diǎn)O. AE與DC交于點(diǎn)M,BD與AC交于點(diǎn)N.

(1)如圖①,求證:AE=BD;

(2)如圖②,若AC=DC,在不添加任何輔助線(xiàn)的情況下,請(qǐng)直接寫(xiě)出圖②中四對(duì)全等的直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,點(diǎn)邊所在直線(xiàn)上的一個(gè)動(dòng)點(diǎn),交于點(diǎn),邊所在直線(xiàn)交于點(diǎn)

在圖中,,直接寫(xiě)出的值;

在圖中,,直接寫(xiě)出的值;

在圖中,,先寫(xiě)出的值,再加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案