【題目】如果一個三位數(shù),十位數(shù)字等于百位數(shù)字與個位數(shù)字的平均數(shù),我們稱這個三位數(shù)為“順子數(shù)”,例如:630,123.
如果一個三位數(shù),十位數(shù)字等于百位數(shù)字與個位數(shù)字的積的算術平方根,我們稱這個三位數(shù)為“和諧數(shù)”,例如:139,124.
(1)若三位數(shù)是“順子數(shù)”,且各位數(shù)字之和大于7小于10,且百位數(shù)字a使得一元二次方程(a﹣5)x2+2ax+a﹣6=0有實數(shù)根,求這個“順子數(shù)”;
(2)若三位數(shù)既是“順子數(shù)”又是“和諧數(shù)”,請?zhí)剿鱝,b,c三者的關系.
【答案】(1)這個“順子數(shù)”為333或432或630;(2)a=b=c.
【解析】
(1)根據(jù)根的判別式求出實數(shù)的取值范圍,各位數(shù)字之和大于7小于10,則a+b+c=8或a+b+c=9,再根據(jù)“順子數(shù)”的定義得到即可得出a+c=6,分類討論即可.
(2)根據(jù)“順子數(shù)”,“和諧數(shù)”的定義得到ac=b2,a+c=2b,整理即可.
(1)根據(jù)題意得:△=(2a)2﹣4(a﹣5)(a﹣6)≥0且
解得:且
∵各位數(shù)字之和大于7小于10,
∴a+b+c=8或a+b+c=9,
又∵
∴a+c=(舍去)或a+c=6,
若a=3,則c=3,b=3,該數(shù)為333,
若a=4,則c=2,b=3,該數(shù)為432,
若a=6,則c=0,b=3,該數(shù)為630,
答:這個“順子數(shù)”為333或432或630,
(2)根據(jù)題意得:
ac=b2,a+c=2b,
把代替ac=b2,得:
整理得:a=c,
答:a,b,c三者的關系為:a=b=c.
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程:x2﹣2(m+1)x+m2+5=0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)若原方程的兩個實數(shù)根為x1、x2, 且滿足x12+x22=|x1|+|x2|+2x1x2,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售某種玩具,進貨價為元.根據(jù)市場調查:在一段時間內,銷售單價是元時,銷售量是件,而銷售單價每上漲元,就會少售出件玩具,超市要完成不少于件的銷售任務,又要獲得最大利潤,則銷售單價應定為________元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+3的圖象經(jīng)過點 (-3,0),(2,-5).
(1)試確定此二次函數(shù)的解析式;
(2)請你判斷點P(-2,3)是否在這個二次函數(shù)的圖象上?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=36°,AB的垂直平分線DE交AC于D,交AB于E,下述結論:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周長等于AB+BC;(4)D是AC中點.其中正確的命題序號是( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,完成下列推理過程:
如圖所示,點E在外部,點D在BC邊上,DE交AC于F,若,,
求證:.
證明:∵(已知),
(________________),
∴(________________),
又∵,
∴________________(________),
即,
在和中
(已證)
∵(已知)
(已證)
∴(________).
∴(________________)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將直角三角板ABC繞直角頂點C逆時針旋轉角度,得到△DCE,其中CE與AB交于點F,∠ABC=30°,連接BE,若△BEF為等腰三角形(即有兩內角相等),則旋轉角的值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場將進貨價為40元的臺燈以50元的銷售價售出,平均每月能售出800個.市場調研表明:當銷售價每上漲1元時,其銷售量就將減少10個.設每個臺燈的銷售價上漲元.
(1) 試用含的代數(shù)式填空:
①漲價后,每個臺燈的利潤為 元;
②漲價后,商場的臺燈平均每月的銷售量為 臺;
(2) 如果商場要想銷售總利潤平均每月達到20000元,商場經(jīng)理甲說“在原售價每臺50元的基礎上再上漲40元,可以完成任務”,商場經(jīng)理乙說“不用漲那么多,在原售價每臺50元的基礎上再上漲30元就可以了”,試判斷經(jīng)理甲與乙的說法是否正確,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAD=∠CAE=90o,AB=AD,AE=AC.
(1)若AC=10,求四邊形ABCD的面積;
(2)求證:AC平分∠ECF;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com