【題目】如圖,正方形ABCD的邊長(zhǎng)為2,對(duì)角線AC與BC相交于O , E為AB的中點(diǎn),F為DE的中點(diǎn),G為CF的中點(diǎn), OH⊥DE于H , 過A作AI⊥DE于I , 交BD于J , 交BC于K , 連接BI .
下列結(jié)論:①G到AC的距離等于 ;②OH= ;③BK= AK;④∠BIJ=45°.其中正確的結(jié)論是
A.①②③
B.①②④
C.①③④
D.①②③④
【答案】B
【解析】解:①正確,鏈接AF、AG,
則S△AFC=S△ADC-S△CDF=2-×2×-×2×1=
∵S△AFC=2S△AGC , 所∴S△AGC=
設(shè)G到AG的距離為h,則由ACh=
由勾股定理AC==2 ,
∴h==
②正確,連接EO并延長(zhǎng),交CD于點(diǎn)L,則EL=2,由勾股定理DE==
∵Rt△EOH∽R(shí)t△EDL
∴ , ∴
∴OH=
③錯(cuò)誤,
∵AI⊥DE,∴∠ADE+∠DAI=90°
∵∠BAK+∠DAI=90°,∴∠BAK=∠ADE
∵∠KBA=∠EAD=90°,BA=AD
∴△BAK≌△ADE,∴BK=AE
∵點(diǎn)E是AB邊的中點(diǎn),∴AE=BE
∴BK=AE=BE=AB≠AK.
④正確,AB=2,則BK=BE=AE=1,AK=DE=
由△BKJ∽△DAJ,得JK=AK=
由△IAE∽△BAK,得AI= , ∴IK=
∴IKJK==1=BK2 , 即 ,
又∠BKI=∠JKB,∴△BKI∽△KJB
∴∠BIK=∠JBK=45°
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對(duì)相似三角形的判定與性質(zhì)的理解,了解相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,點(diǎn)E、F分別是AB、CD的中點(diǎn),過點(diǎn)E作AB的垂線,過點(diǎn)F作CD的垂線,兩垂線交于點(diǎn)G,連接AG、BG、CG、DG,且∠AGD=∠BGC.
(1)求證:AD=BC;
(2)求證:△AGD∽△EGF;
(3)如圖2 , 若AD、BC所在直線互相垂直,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖∠BAC=30°,D 為角平分線上一點(diǎn),DE⊥AC 于 E,DF∥AC且交AB于F.
(1)求證:△ADF 是等腰三角形.
(2)若 DF=10cm,求 DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,梯形ABCD中,AD∥BC,∠B=90°,AD=AB=4,BC=7,點(diǎn)E在BC邊上,將△CDE沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)C'處.
(1)求∠C'DE的度數(shù);
(2)求△C'DE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義一種對(duì)正整數(shù)n的“F運(yùn)算”:①當(dāng)n為奇數(shù)時(shí),結(jié)果為3n+5;②當(dāng)n為偶數(shù)時(shí),結(jié)果為(其中k是使為奇數(shù)的正整數(shù));并且運(yùn)算重復(fù)進(jìn)行.例如,取n=26,第3次“F運(yùn)算”的結(jié)果是11.則:若n=449,則第449次“F運(yùn)算”的結(jié)果是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】去年6月某日自治區(qū)部分市、縣的最高氣溫(℃)如下表:
區(qū)縣 | 吐魯番 | 塔城 | 和田 | 伊寧 | 庫(kù)爾勒 | 阿克蘇 | 昌吉 | 呼圖壁 | 鄯善 | 哈密 |
氣溫(℃) | 33 | 32 | 32 | 30 | 30 | 29 | 29 | 31 | 30 | 28 |
則這10個(gè)市、縣該日最高氣溫的眾數(shù)和中位數(shù)分別是( )
A.32,32
B.32,30
C.30,30
D.30,32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅嶺中學(xué)在“五四青年節(jié)”組織九年級(jí)全體學(xué)生320人進(jìn)行了一次“愛我中華”競(jìng)賽,賽后隨機(jī)抽取了部分學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì),制作如下頻數(shù)分布表和頻數(shù)分布直方圖,請(qǐng)根據(jù)圖表提供的信息,解答下列問題:
分?jǐn)?shù)段(x表示分?jǐn)?shù)) | 頻數(shù) | 頻率 |
50≤x<60 | 4 | 0.1 |
60≤x<70 | 8 | b |
70≤x<80 | a | 0.3 |
80≤x<90 | 10 | 0.25 |
90≤x<100 | 6 | 0.15 |
(1)表中a= , b= , 并補(bǔ)全直方圖.
(2)若用扇形統(tǒng)計(jì)圖描述此成績(jī)分布情況,則分?jǐn)?shù)段60≤x<70對(duì)應(yīng)扇形的圓心角度數(shù)是;
(3)請(qǐng)估計(jì)該年級(jí)分?jǐn)?shù)在80≤x<100的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E、F分別是線段AO、BO的中點(diǎn),若AC+BD=22cm,△OAB的周長(zhǎng)是16cm,則EF的長(zhǎng)為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+2bx+c與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的右側(cè)),且與y軸正半軸交于點(diǎn)C,已知A(2,0)
(1)當(dāng)B(﹣4,0)時(shí),求拋物線的解析式;
(2)O為坐標(biāo)原點(diǎn),拋物線的頂點(diǎn)為P,當(dāng)tan∠OAP=3時(shí),求此拋物線的解析式;
(3)O為坐標(biāo)原點(diǎn),以A為圓心OA長(zhǎng)為半徑畫⊙A,以C為圓心, OC長(zhǎng)為半徑畫圓⊙C,當(dāng)⊙A與⊙C外切時(shí),求此拋物線的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com