【題目】如圖,在平面直角坐標(biāo)系xOy中,直線AB與拋物線y=ax2+bx交于點(diǎn)A(6,0)和點(diǎn)B(1,﹣5).
(1)求這條拋物線的表達(dá)式和直線AB的表達(dá)式;
(2)如果點(diǎn)C在直線AB上,且∠BOC的正切值是,求點(diǎn)C的坐標(biāo).
【答案】(1)y=x2﹣6x,y=x﹣6;(2)C(,﹣).
【解析】
(1)利用待定系數(shù)法求二次函數(shù)和一次函數(shù)的解析式;
(2)先說(shuō)明OA=OH=6,則∠OAH=45°,作輔助線,根據(jù)正切值證明∠BOC=∠OBE,作OB的垂直平分線交AB于C,交OB于F,解法一:先根據(jù)中點(diǎn)坐標(biāo)公式可得F(),易得直線OB的解析式為:y=﹣5x,根據(jù)兩直線垂直的關(guān)系可得直線FC的解析式為:y,列方程x﹣6,解出可得C的坐標(biāo);
解法二:過(guò)C作CD⊥x軸于D,連接OC,設(shè)C(m,m﹣6),根據(jù)OC=BC,列方程可得結(jié)論.
(1)把點(diǎn)A(6,0)和點(diǎn)B(1,﹣5)代入拋物線y=ax2+bx得:
,解得:,∴這條拋物線的表達(dá)式:y=x2﹣6x,設(shè)直線AB的解析式為:y=kx+b,把點(diǎn)A(6,0)和點(diǎn)B(1,﹣5)代入得:,解得:,則直線AB的解析式為:y=x﹣6;
(2)當(dāng)x=0時(shí),y=6,當(dāng)y=0時(shí),x=6,∴OA=OH=6.
∵∠AOH=90°,∴∠OAH=45°,過(guò)B作BG⊥x軸于G,則△ABG是等腰直角三角形,∴AB=5,過(guò)O作OE⊥AB于E,S△AOHAHOEOAOH,6OE=6×6,OE=3,∴BE=AB﹣AE=5,Rt△BOE中,tan∠OBE.
∵∠BOC的正切值是,∴∠BOC=∠OBE,∴OC=CB.作OB的垂直平分線交AB于C,交OB于F,解法一:∵B(1,﹣5),∴F(),易得直線OB的解析式為:y=﹣5x,設(shè)直線FC的解析式為:yx+b,把F()代入得:b,b,∴直線FC的解析式為:yx﹣6,x,當(dāng)x時(shí),y,∴C();
解法二:過(guò)C作CD⊥x軸于D,連接OC,設(shè)C(m,m﹣6),則AC(6﹣m).
∵OC=BC,∴m2+(m﹣6)2=[5(6﹣m)],m,∴C().
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過(guò)D作DE⊥AC,垂足為E.
(1)證明:DE為⊙O的切線;
(2)連接OE,若BC=4,求△OEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是⊙O的直徑,點(diǎn)D是⊙O 上一點(diǎn),⊙O的切線CB與AD的延長(zhǎng)線交于點(diǎn)B,點(diǎn)F是直徑AC上一點(diǎn),連接DF并延長(zhǎng)交⊙O于點(diǎn)E,連接AE.
(1)求證:∠ABC=∠AED;
(2)連接BF,若AD=,AF=6,tan∠AED=,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的對(duì)稱軸為直線x=﹣1,下列結(jié)論正確的有_____(填序號(hào)).
①若圖象過(guò)點(diǎn)(﹣3,y1)、(2,y2),則y1<y2;
②ac<0;
③2a﹣b=0;
④b2﹣4ac<0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的弦,C是的中點(diǎn),聯(lián)結(jié)OA,AC,如果∠OAB=20°,那么∠CAB的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某興趣小組用無(wú)人機(jī)進(jìn)行航拍測(cè)高,無(wú)人機(jī)從1號(hào)樓和2號(hào)樓的地面正中間B點(diǎn)垂直起飛到高度為50米的A處,測(cè)得1號(hào)樓頂部E的俯角為60°,測(cè)得2號(hào)樓頂部F的俯角為45°.已知1號(hào)樓的高度為20米,則2號(hào)樓的高度為_____米(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)上部分點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y的對(duì)應(yīng)值如下表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … |
| ﹣4 | ﹣4 | 0 | … |
(1)求該拋物線的表達(dá)式;
(2)已知點(diǎn)E(4, y)是該拋物線上的點(diǎn),點(diǎn)E關(guān)于拋物線的對(duì)稱軸對(duì)稱的點(diǎn)為點(diǎn)F,求點(diǎn)E和點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】周末小明約上小亮一起到馬山公園游玩,如圖所示,小明從家(A點(diǎn))出發(fā),沿著北偏西60°方向的道路行走2千米到達(dá)小亮家(B點(diǎn)),然后兩人再沿著北偏東45°方向一起去馬山公園(C點(diǎn)),到達(dá)馬山公園后小明發(fā)現(xiàn)自己家(A點(diǎn))正好在馬山公園(C點(diǎn))的正南方向,求小明家(A家)到馬山公園(C點(diǎn))的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是臨時(shí)暫停修建的一段鄉(xiāng)村馬路,高的一邊已經(jīng)修好,低的一邊才剛做好路基.一輛汽車在高的一邊沿箭頭方向行駛時(shí)偏離了正常行駛路線后停止,但一側(cè)的兩個(gè)輪子已經(jīng)駛?cè)氲偷囊贿,?jīng)檢查,地板AB剛接觸到高的一邊的路面邊緣P,已知AB=130 cm,輪子A、B處在地板以下部分與地面的距離AC=BD=30 cm,兩路面的高度差為50 cm.設(shè)路面是水平的,則PC的長(zhǎng)是____________ cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com