【題目】為宣傳6月6日世界海洋日,某校八年級舉行了主題為“珍海洋資源,保護(hù)海洋生物多科性“的知識黨春活動,為了解此次宛賽成鎮(zhèn)(百分制)的情況,隨機(jī)抽取了部分參賽學(xué)生的成績,整理并繪制出如下不完整的統(tǒng)計表和統(tǒng)計圖(如圖):
請根據(jù)圖表信息解答以下問題:
(1)本次調(diào)查一共隨機(jī)抽取了_____個參賽學(xué)生的成績;
(2)a=_____,b=_____.
(3)所抽取的參賽學(xué)生的成績的中位數(shù)落在的“組別”是_____
(4)請你估計,該校八年級全年級有500名學(xué)生,競賽成績達(dá)到80分以上(含80分)的學(xué)生約有多少人?
【答案】(1)50人;(2)8,10;(3)C組;(4)320人
【解析】
(1)用D組的人數(shù)除以百分比即可求解;
(2)用總?cè)藬?shù)乘以百分比求出a,總?cè)藬?shù)減去A,C,D三組的人數(shù)求出b;
(3)本次調(diào)查一共隨機(jī)抽取50名學(xué)生,中位數(shù)落在C組;
(4)用500乘以80分以上(含80分)的比例即可求解.
解:(1)本次調(diào)查一共隨機(jī)抽取學(xué)生:18÷36%=50(人),
(2)a=50×16%=8,b=50-18-14-8=10;
(3)本次調(diào)查一共隨機(jī)抽取50名學(xué)生,中位數(shù)落在C組,
(4)該校八年級競賽成績達(dá)到80分以上(含80分)的學(xué)生有500×=320(人).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為元,試銷過程中發(fā)現(xiàn),每月銷售量(萬件)與銷售單價(元)之間的關(guān)系可以近似地看作一次函數(shù).(利潤售價-制造成本)
寫出每月的利潤(萬元)與銷售單價(元)之間的函數(shù)關(guān)系式;
當(dāng)銷售單價為多少元時,廠商每月獲得的利潤為萬元?
如果廠商每月的制造成本不超過萬元,那么當(dāng)銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程tx2﹣6x+m+4=0有兩個實數(shù)根x1、x2.
(1)當(dāng)t=m=1時,若x1<x2,求x1、x2;
(2)當(dāng)m=1時,求t的取值范圍;
(3)當(dāng)t=1時,若x1、x2滿足3|x1|=x2+4,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育器材室有A、B兩種型號的實心球,1只A型球與1只B型球的質(zhì)量共7千克,3只A型球與1只B型球的質(zhì)量共13千克.
(1)每只A型球、B型球的質(zhì)量分別是多少千克?
(2)現(xiàn)有A型球、B型球的質(zhì)量共17千克,則A型球、B型球各有多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點.
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標(biāo);若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標(biāo)及△PBC的面積最大值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,E為AC邊的一點,F為AB邊上一點,連接CF,交BE于點D,且∠ACF=∠CBE,CG平分∠ACB交BD于點G,
(1)如圖1,求證:CF=BG;
(2)如圖2,延長CG交AB于H,連接AG,過點C作CP∥AG交BE的延長線于點P,
求證:PB=CP+CF;
(3)如圖3,在(2)間的條件下,當(dāng)∠GAC=2∠FCH時,若S△AEG=3,BG=6,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角三角形ABC的兩條高線BE、CD相交于點O,BE=CD.
(1)求證:BD=CE;
(2)判斷點O是否在∠BAC的平分線上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點C到OB的水平距離為3 m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運(yùn)汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com