【題目】已知的直徑為10cm,AB,CD是的兩條弦,,,,則弦AB和CD之間的距離是______cm.
【答案】7或1
【解析】
分兩種情況考慮:當(dāng)兩條弦位于圓心O一側(cè)時(shí),如圖1所示,過O作,交CD于點(diǎn)F,交AB于點(diǎn)E,連接OA,OC,由,得到,利用垂徑定理得到E與F分別為CD與AB的中點(diǎn),在直角三角形AOF中,利用勾股定理求出OF的長(zhǎng),在三角形COE中,利用勾股定理求出OE的長(zhǎng),由即可求出EF的長(zhǎng);當(dāng)兩條弦位于圓心O兩側(cè)時(shí),如圖2所示,同理由求出EF的長(zhǎng)即可.
解:分兩種情況考慮:
當(dāng)兩條弦位于圓心O一側(cè)時(shí),如圖1所示,
過O作,交AB于點(diǎn)E,交CD于點(diǎn)F,連接OA,OC,
,,
、F分別為AB、CD的中點(diǎn),
,,
在中,,,
根據(jù)勾股定理得:,
在中,,,
根據(jù)勾股定理得:,
則;
當(dāng)兩條弦位于圓心O兩側(cè)時(shí),如圖2所示,同理可得,
綜上,弦AB與CD的距離為7cm或1cm.
故答案為:7或1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在現(xiàn)今“互聯(lián)網(wǎng)+”的時(shí)代,密碼與我們的生活已經(jīng)緊密相連,密不可分,而諸如“123456”、生日等簡(jiǎn)單密碼又容易被破解,因此利用簡(jiǎn)單方法產(chǎn)生一組容易記憶的密碼就很有必要了,有一種用“因式分解”法產(chǎn)生的密碼、方便記憶,其原理是:將一個(gè)多項(xiàng)式分解因式,如多項(xiàng)式:因式分解的結(jié)果為,當(dāng)時(shí),此時(shí)可以得到數(shù)字密碼171920.
(1)根據(jù)上述方法,當(dāng)時(shí),對(duì)于多項(xiàng)式分解因式后可以形成哪些數(shù)字密碼?(寫出三個(gè))
(2)若一個(gè)直角三角形的周長(zhǎng)是24,斜邊長(zhǎng)為10,其中兩條直角邊分別為x、y,求出一個(gè)由多項(xiàng)式分解因式后得到的密碼(只需一個(gè)即可);
(3)若多項(xiàng)式因式分解后,利用本題的方法,當(dāng)時(shí)可以得到其中一個(gè)密碼為242834,求m、n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=-x+2與x軸、y軸分別交于點(diǎn)A、C,拋物線y=-x2+bx+c過點(diǎn)A、C,且與x軸交于另一點(diǎn)B,在第一象限的拋物線上任取一點(diǎn)D,分別連接CD、AD,作于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)求△ACD面積的最大值;
(3)若△CED與△COB相似,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)購(gòu)進(jìn)一種每件價(jià)格為100元的新商品,在商場(chǎng)試銷發(fā)現(xiàn):銷售單價(jià)x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:(1)求出y與x之間的函數(shù)關(guān)系式;(2)如果商店銷售這種商品,每天要獲得1500元利潤(rùn),那么每件商品的銷售價(jià)應(yīng)定為多少元?(3)寫出每天的利潤(rùn)W與銷售單價(jià)x之間的函數(shù)關(guān)系式;若你是商場(chǎng)負(fù)責(zé)人,會(huì)將售價(jià)定為多少,來保證每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)(a、b都是常數(shù),且a<0)的圖像與x軸交于點(diǎn)、,頂點(diǎn)為點(diǎn)C.
(1)求這個(gè)二次函數(shù)的解析式及點(diǎn)C的坐標(biāo);
(2)過點(diǎn)B的直線交拋物線的對(duì)稱軸于點(diǎn)D,聯(lián)結(jié)BC,求∠CBD的余切值;
(3)點(diǎn)P為拋物線上一個(gè)動(dòng)點(diǎn),當(dāng)∠PBA=∠CBD時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法錯(cuò)誤的是
A. 連續(xù)拋一枚均勻硬幣2次必有1次正面朝上
B. 連續(xù)拋一枚均勻硬幣10次都可能正面朝上
C. 大量反復(fù)拋一枚均勻硬幣,平均每100次出現(xiàn)正面朝上50次
D. 通過拋一枚均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,4),B(1,1),C(4,3).
(1)請(qǐng)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△A1B1C1;并寫出A1、B1、C1三點(diǎn)的坐標(biāo).
(2)求出(1)中C點(diǎn)旋轉(zhuǎn)到C1點(diǎn)所經(jīng)過的路徑長(zhǎng)(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+5與y軸交于點(diǎn)A,與x軸交于點(diǎn)B.拋物線y=﹣x2+bx+c過A、B兩點(diǎn).
(1)寫出點(diǎn)A,B的坐標(biāo);
(2)求拋物線的解析式;
(3)過點(diǎn)A作AC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一動(dòng)點(diǎn)(點(diǎn)P在AC上方),作PD平行于y軸交AB于點(diǎn)D,問當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自主學(xué)習(xí),請(qǐng)閱讀下列解題過程.
解一元二次不等式:x2﹣3x>0.
解:設(shè)x2﹣3x=0,解得:x1=0,x2=5.則拋物線y=x2﹣3x與x軸的交點(diǎn)坐標(biāo)為(0,0)和(3,0).畫出二次函數(shù)y=x2﹣3x的大致圖象(如圖所示),由圖象可知:當(dāng)x<0或x>3時(shí)函數(shù)圖象位于x軸上方,此時(shí)y>0,即x2﹣3x>0,所以,一元二次不等式x2﹣3x>0的解集為:x<0或x>3.
通過對(duì)上述解題過程的學(xué)習(xí),按其解題的思路和方法解答下列問題:
(1)上述解答過程中,滲透了下列數(shù)學(xué)思想中的 和 .(只填序號(hào))
①轉(zhuǎn)化思想 ②分類討論思想 ③數(shù)形結(jié)合思想 ④整體思想
(2)一元二次不等式x2﹣3x<0的解集為 .
(3)用類似的方法解一元二次不等式:x2﹣3x﹣4<0的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com