【題目】某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關系:(1)求出yx之間的函數(shù)關系式;(2)如果商店銷售這種商品,每天要獲得1500元利潤,那么每件商品的銷售價應定為多少元?(3)寫出每天的利潤W與銷售單價x之間的函數(shù)關系式;若你是商場負責人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?

【答案】(1);(2) 每件商品的銷售價應定為元或元;(3)售價定為/件時,每天最大利潤元.

【解析】

(1)待定系數(shù)法求解可得;
(2)根據(jù)“每件利潤×銷售量=總利潤”列出一元二次方程,解之可得;
(3)根據(jù)以上相等關系列出函數(shù)解析式,配方成頂點式,利用二次函數(shù)性質(zhì)求解可得.

(1)之間的函數(shù)關系式為
由所給函數(shù)圖象可知:
,
解得:
的函數(shù)關系式為;

(2)根據(jù)題意,得:,
整理,得:,
解得:,
答:每件商品的銷售價應定為元或元;

(3),

,
∴當時,,
∴售價定為/件時,每天最大利潤元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=AC,AB的垂直平分線DEAC所在的直線相交于點E,垂足為D,連接BE.已知AE=5,tanAED=,求BE+CE的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛客車從甲地出發(fā)前往乙地,平均速度v(千米/小時)與所用時間t(小時)的函數(shù)關系如圖所示,其中60≤v≤120.

(1)直接寫出vt的函數(shù)關系式;

(2)若一輛貨車同時從乙地出發(fā)前往甲地,客車比貨車平均每小時多行駛20千米,3小時后兩車相遇.

①求兩車的平均速度;

②甲、乙兩地間有兩個加油站A、B,它們相距200千米,當客車進入B加油站時,貨車恰好進入A加油站(兩車加油的時間忽略不計),求甲地與B加油站的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點M,N,P分別為AD,BCCD的中點.現(xiàn)從點P觀察線段AB,當長度為1的線段l(圖中的黑粗線)以每秒1個單位長的速度沿線段MN從左向右運動時,l將阻擋部分觀察視線,在PAB區(qū)域內(nèi)形成盲區(qū).設l的右端點運動到M點的時刻為0,用t()表示l的運動時間.

(1)請你針對圖(1)(2)(3)l位于不同位置的情形分別畫出在PAB內(nèi)相應的盲區(qū),并在盲區(qū)內(nèi)涂上陰影.

(2)PAB內(nèi)的盲區(qū)面積是y(平方單位),在下列條件下,求出用t表示y的函數(shù)關系式.

1≤t≤2;

2≤t≤3;

3≤t≤4.

根據(jù)①~③中得到的結(jié)論,請你簡單概括yt變化而變化的情況.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣(x﹣h)2(h為常數(shù)),當自變量x的值滿足2≤x≤5時,與其對應的函數(shù)值y的最大值為﹣1,則h的值為(

A. 36 B. 16 C. 13 D. 46

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AO的半徑,AC的弦,點F的中點,OFAC于點E,AC=8EF=2

1)求AO的長;

2)過點CCDAO,交AO延長線于點D,求sinACD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知的直徑為10cm,AB,CD的兩條弦,,則弦ABCD之間的距離是______cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在研究相似問題時,甲、乙同學的觀點如下:

甲:將邊長為3、4、5的三角形按圖1的方式向外擴張,得到新三角形,它們的對應邊間距為1,則新三角形與原三角形相似.

乙:將鄰邊為3和5的矩形按圖2的方式向外擴張,得到新的矩形,它們的對應邊間距均為1,則新矩形與原矩形相似.

對于兩人的觀點,下列說法正確的是(

A.甲對,乙不對 B.甲不對,乙對 C.兩人都對 D.兩人都不對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個圓形噴水池的中央垂直于水面安裝了一個柱形噴水裝置OA,O恰好在水面中心,安置在柱子頂端A處的噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下,且在過OA的任一平面上,按如圖所示建立直角坐標系,水流噴出的高度y(m)與水平距離x(m)之間的關系式可以用y=﹣x2+bx+c表示,且拋物線經(jīng)過點B(,2)C(2,).請根據(jù)以上信息,解答下列問題;

(1)求拋物線的函數(shù)關系式,并確定噴水裝置OA的高度;

(2)噴出的水流距水面的最大高度是多少米?

(3)若不計其他因素,水池的半徑至少要多少米,才能使噴出的水流不至于落在池外?

查看答案和解析>>

同步練習冊答案