【題目】ABC中,AB=AC,AB的垂直平分線DEAC所在的直線相交于點(diǎn)E,垂足為D,連接BE.已知AE=5,tanAED=,求BE+CE的值

【答案】BE+CE=616

【解析】

本題有兩種情形,需要分類討論.首先根據(jù)題意畫出圖形,由線段垂直平分線的性質(zhì),即可求得AE=BE,又由三角函數(shù)的性質(zhì),求得AD的長(zhǎng),繼而求得答案.

解:有兩種情形,需要分類討論:

①∠BAC為銳角,如圖所示,

AB的垂直平分線是DE,

AE=BE,EDAB,

AE=5,tanAED

sinAED

AD=AEsinAED=3

AB=6

BE+CE=AE+CE=AC=AB=6

②若∠BAC為鈍角,如圖所示,同理可求得:BE+CE=16

綜上所述,BE+CE=616

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a0)的圖象如圖所示,下列結(jié)論:①2a+b0;abc0;b2﹣4ac0;a+b+c0;(a﹣2b+c)0,其中正確的個(gè)數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道:x26x(x26x+9)9(x3)29;﹣x2+10=﹣(x210x+25)+25=﹣(x5)2+25,這一種方法稱為配方法,利用配方法請(qǐng)解以下各題:

(1)按上面材料提示的方法填空:a24a      .﹣a2+12a      

(2)探究:當(dāng)a取不同的實(shí)數(shù)時(shí)在得到的代數(shù)式a24a的值中是否存在最小值?請(qǐng)說(shuō)明理由.

(3)應(yīng)用:如圖.已知線段AB6,MAB上的一個(gè)動(dòng)點(diǎn),設(shè)AMx,以AM為一邊作正方形AMND,再以MB、MN為一組鄰邊作長(zhǎng)方形MBCN.問(wèn):當(dāng)點(diǎn)MAB上運(yùn)動(dòng)時(shí),長(zhǎng)方形MBCN的面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值;否則請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知,

求拋物線的表達(dá)式;

在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;

點(diǎn)E是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Ex軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐:制作無(wú)蓋盒子

任務(wù)一:如圖1,有一塊矩形紙板,長(zhǎng)是寬的2倍,要將其四角各剪去一個(gè)正方形,折成高為4cm,容積為的無(wú)蓋長(zhǎng)方體盒子紙板厚度忽略不計(jì)

請(qǐng)?jiān)趫D1的矩形紙板中畫出示意圖,用實(shí)線表示剪切線,虛線表示折痕.

請(qǐng)求出這塊矩形紙板的長(zhǎng)和寬.

任務(wù)二:圖2是一個(gè)高為4cm的無(wú)蓋的五棱柱盒子直棱柱,圖3是其底面,在五邊形ABCDE中,,,,

試判斷圖3AEDE的數(shù)量關(guān)系,并加以證明.

2中的五棱柱盒子可按圖4所示的示意圖,將矩形紙板剪切折合而成,那么這個(gè)矩形紙板的長(zhǎng)和寬至少各為多少cm?請(qǐng)直接寫出結(jié)果圖中實(shí)線表示剪切線,虛線表示折痕紙板厚度及剪切接縫處損耗忽略不計(jì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】哈爾濱龍塔坐落于經(jīng)濟(jì)技術(shù)開(kāi)發(fā)區(qū),在鋼結(jié)構(gòu)塔中位居亞洲第一,世界第二.在塔上有一個(gè)室外觀光平臺(tái)A可以欣賞的哈爾濱市的全景,室外觀光平臺(tái)中央位置A距離塔頂P146米,一名同學(xué)站在C處觀察A點(diǎn)的仰角為45°,觀察P點(diǎn)的仰角為60.5°,則龍塔PB的高度為______________(已知:tan 60.5°1.77)(精確到1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在現(xiàn)今互聯(lián)網(wǎng)+”的時(shí)代,密碼與我們的生活已經(jīng)緊密相連,密不可分,而諸如“123456”、生日等簡(jiǎn)單密碼又容易被破解,因此利用簡(jiǎn)單方法產(chǎn)生一組容易記憶的密碼就很有必要了,有一種用因式分解法產(chǎn)生的密碼、方便記憶,其原理是:將一個(gè)多項(xiàng)式分解因式,如多項(xiàng)式:因式分解的結(jié)果為,當(dāng)時(shí),此時(shí)可以得到數(shù)字密碼171920.

(1)根據(jù)上述方法,當(dāng)時(shí),對(duì)于多項(xiàng)式分解因式后可以形成哪些數(shù)字密碼?(寫出三個(gè))

(2)若一個(gè)直角三角形的周長(zhǎng)是24,斜邊長(zhǎng)為10,其中兩條直角邊分別為x、y,求出一個(gè)由多項(xiàng)式分解因式后得到的密碼(只需一個(gè)即可);

(3)若多項(xiàng)式因式分解后,利用本題的方法,當(dāng)時(shí)可以得到其中一個(gè)密碼為242834,m、n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道:sin30°,tan30°,sin45°,tan45°1sin60°,tan60°,由此我們可以看到tan30°sin30°,tan45°sin45°,tan60°sin60°,那么對(duì)于任意銳角α,是否可以得到tanαsinα呢?請(qǐng)結(jié)合銳角三角函數(shù)的定義加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)一種每件價(jià)格為100元的新商品,在商場(chǎng)試銷發(fā)現(xiàn):銷售單價(jià)x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:(1)求出yx之間的函數(shù)關(guān)系式;(2)如果商店銷售這種商品,每天要獲得1500元利潤(rùn),那么每件商品的銷售價(jià)應(yīng)定為多少元?(3)寫出每天的利潤(rùn)W與銷售單價(jià)x之間的函數(shù)關(guān)系式;若你是商場(chǎng)負(fù)責(zé)人,會(huì)將售價(jià)定為多少,來(lái)保證每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案