【題目】如圖,直線ABCD相交于一點(diǎn)OOE平分∠BOD,OFOE于點(diǎn)O,∠AOC62°,則∠COF的度數(shù)為_____

【答案】59°

【解析】

先利用對(duì)頂角的性質(zhì)得到∠BOD=∠AOC62°,再根據(jù)角平分線定義得到∠BOEBOD31°,接著利用垂直定義得到∠EOF90°,則利用互余得到∠BOF59°,利用互補(bǔ)得到∠BOC118°,然后計(jì)算∠BOC﹣∠BOF即可.

解:∵直線ABCD相交于一點(diǎn)O

∴∠BOD=∠AOC62°,

OE平分∠BOD,

∴∠BOEBOD31°

OFOE,

∴∠EOF90°,

∴∠BOF90°31°59°,

∵∠BOC180°﹣∠AOC118°

∴∠COF118°59°59°

故答案是:59°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,∠A36°,∠1=∠2,∠ADEEDB,則∠DEB_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某經(jīng)銷(xiāo)商銷(xiāo)售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)為10元/千克,已知銷(xiāo)售價(jià)不低于成本價(jià),且物價(jià)部門(mén)規(guī)定這種產(chǎn)品的銷(xiāo)售價(jià)不高于18元/千克,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷(xiāo)售量y(千克)與銷(xiāo)售價(jià)x(元/千克)之間的函數(shù)關(guān)系如圖所示:

(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)求每天的銷(xiāo)售利潤(rùn)W(元)與銷(xiāo)售價(jià)x(元/千克)之間的函數(shù)關(guān)系式.當(dāng)銷(xiāo)售價(jià)為多少時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?
(3)該經(jīng)銷(xiāo)商想要每天獲得150元的銷(xiāo)售利潤(rùn),銷(xiāo)售價(jià)應(yīng)定為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將Rt△ABC沿某條直線折疊,使斜邊的兩個(gè)端點(diǎn)A與B重合,折痕為DE.

(1)如果AC=6cm,BC=8cm,試求△ACD的周長(zhǎng);

(2)如果∠CAD:∠BAD=1:2,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C、D、E三點(diǎn)在同一直線上,連接BD.

(1)求證:△BAD≌△CAE;

(2)請(qǐng)判斷BD、CE有何大小、位置關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)MAB的中點(diǎn),點(diǎn)PMB上.分別以AP,PB為邊,作正方形APCD和正方形PBEF,連結(jié)MDME.設(shè)AP=a,BP=b,且a+b=10,ab=20.則圖中陰影部分的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.

(1)求證:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線 y=x3 x 軸、y 軸分別交于點(diǎn) A、B,線段 AB 為直角邊在第一內(nèi)作等腰 RtABC,∠BAC90. 點(diǎn) P x 軸上的一個(gè)動(dòng)點(diǎn),設(shè) P(x,0)

(1)當(dāng) x ______________時(shí),PBPC 的值最;

(2)當(dāng) x ______________時(shí),|PBPC|的值最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鄰邊不相等的平行四邊形紙片,剪去一個(gè)菱形,余下一個(gè)四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個(gè)菱形,又剩下一個(gè)四邊形,稱為第二次操作;…依此類(lèi)推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準(zhǔn)菱形.如圖1,ABCD中,若AB=1,BC=2,則ABCD為1階準(zhǔn)菱形.

(1)判斷與推理:
①鄰邊長(zhǎng)分別為2和3的平行四邊形是階準(zhǔn)菱形;
(2)小明為了剪去一個(gè)菱形,進(jìn)行了如下操作:如圖2,把ABCD沿BE折疊(點(diǎn)E在AD上),使點(diǎn)A落在BC邊上的點(diǎn)F,得到四邊形ABFE.請(qǐng)證明四邊形ABFE是菱形.
(3)操作、探究與計(jì)算:
①已知ABCD的鄰邊長(zhǎng)分別為1,a(a>1),且是3階準(zhǔn)菱形,請(qǐng)畫(huà)出ABCD及裁剪線的示意圖,并在圖形下方寫(xiě)出a的值;
②已知ABCD的鄰邊長(zhǎng)分別為a,b(a>b),滿足a=6b+r,b=5r,請(qǐng)寫(xiě)出ABCD是幾階準(zhǔn)菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案