【題目】如圖,∠B=C=90°,MBC的中點(diǎn),DM平分∠ADC,則AM平分∠DAB嗎?試說明理由。(提示:過點(diǎn)MME垂直ADE)。

【答案】見解析

【解析】試題分析:過MME⊥AD,根據(jù)DM平分∠ADC得到∠1=∠2,根據(jù)角平分線的性質(zhì)得出ME=MC,根據(jù)中點(diǎn)得出MC=MB,則ME=MB,然后根據(jù)角平分線的逆定理得出答案.

試題解析:AM平分∠DAB

理由:過點(diǎn)MME⊥AD,垂足為E, ∵DM平分∠ADC, ∴∠1=∠2,

∵M(jìn)C⊥CD,ME⊥AD, ∴ME=MC(角平分線上的點(diǎn)到角兩邊的距離相等),

∵M(jìn)C=MB, ∴ME=MB,

∵M(jìn)B⊥ABME⊥AD,∴AM平分∠DAB(到角的兩邊距離相等的點(diǎn)在這個(gè)角的平分線上).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD和四邊形位似,位似比=2,四邊形A′B′C′D′和四邊形位似,位似比=1.四邊形和四邊形ABCD是位似圖形嗎?位似比是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,EBD延長(zhǎng)線上的點(diǎn),且△ACE是等邊三角形.

(1)求證:四邊形ABCD是菱形;

(2)若∠AED=2EAD,求證:四邊形ABCD是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程組:

(1) (2) (3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),藍(lán)球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率為

(1)求口袋中黃球的個(gè)數(shù);

(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請(qǐng)用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;

(3)現(xiàn)規(guī)定:摸到紅球得5分,摸到黃球得3分,摸到藍(lán)球得2分(每次摸后放回),乙同學(xué)在一次摸球游戲中,第一次隨機(jī)摸到一個(gè)紅球第二次又隨機(jī)摸到一個(gè)藍(lán)球,若隨機(jī)再摸一次,求乙同學(xué)三次摸球所得分?jǐn)?shù)之和不低于10分的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的位置如圖所示,現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)A′,點(diǎn)B′、C′分別是B、C的對(duì)應(yīng)點(diǎn).

1)請(qǐng)畫出平移后的△A′B′C′,并求△A′B′C′的面積;

2)若連接AA′,CC′,則這兩條線段之間的關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CN是等邊的外角內(nèi)部的一條射線,點(diǎn)A關(guān)于CN的對(duì)稱點(diǎn)為D,連接AD,BDCD,其中AD,BD分別交射線CN于點(diǎn)EP

(1)依題意補(bǔ)全圖形;

2)若,求的大。ㄓ煤的式子表示);

3)用等式表示線段, 之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料

小明遇到這樣一個(gè)問題:求計(jì)算所得多項(xiàng)式的一次項(xiàng)系數(shù).

小明想通過計(jì)算所得的多項(xiàng)式解決上面的問題,但感覺有些繁瑣,他想探尋一下,是否有相對(duì)簡(jiǎn)潔的方法.

他決定從簡(jiǎn)單情況開始,先找所得多項(xiàng)式中的一次項(xiàng)系數(shù).通過觀察發(fā)現(xiàn):

也就是說,只需用中的一次項(xiàng)系數(shù)1乘以中的常數(shù)項(xiàng)3,再用中的常數(shù)項(xiàng)2乘以中的一次項(xiàng)系數(shù)2,兩個(gè)積相加,即可得到一次項(xiàng)系數(shù).

延續(xù)上面的方法,求計(jì)算所得多項(xiàng)式的一次項(xiàng)系數(shù).可以先用的一次項(xiàng)系數(shù)1, 的常數(shù)項(xiàng)3, 的常數(shù)項(xiàng)4,相乘得到12;再用的一次項(xiàng)系數(shù)2, 的常數(shù)項(xiàng)2, 的常數(shù)項(xiàng)4,相乘得到16;然后用的一次項(xiàng)系數(shù)3, 的常數(shù)項(xiàng)2, 的常數(shù)項(xiàng)3,相乘得到18.最后將12,16,18相加,得到的一次項(xiàng)系數(shù)為46

參考小明思考問題的方法,解決下列問題:

1)計(jì)算所得多項(xiàng)式的一次項(xiàng)系數(shù)為

2)計(jì)算所得多項(xiàng)式的一次項(xiàng)系數(shù)為

3)若計(jì)算所得多項(xiàng)式的一次項(xiàng)系數(shù)為0,則=_________

4)若的一個(gè)因式,則的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B在反比例函數(shù)y=的圖象上,過點(diǎn)A、B作x軸的垂線,垂足分別是M、N,射線AB交x軸于點(diǎn)C,若OM=MN=NC,四邊形AMNB的面積是3,則k的值為( )

A.2 B.4 C.﹣2 D.﹣4

查看答案和解析>>

同步練習(xí)冊(cè)答案