【題目】如圖,已知ABCD中,∠ABC=60°,AB=4,BC=m,E為BC邊上的動點,連結AE,作點B關于直線AE的對稱點F.
(1)若m=6,①當點F恰好落在∠BCD的平分線上時,求BE的長;
②當E、C重合時,求點F到直線BC的距離;
(2)當點F到直線BC的距離d滿足條件:2﹣2≤d≤2+4,求m的取值范圍.
【答案】(1)①BE=10﹣2;②;(2)4﹣4≤m≤8+4
【解析】
(1)①過F作FT⊥BC于T,延長BA交∠BCD的平分線于G,連接BF,EF,AF,由平行四邊形性質可得:△BCG,△CDH均為等邊三角形,AG=AH=2,再由B、F關于直線AE對稱,可證得:△CEF∽△GFA,再結合勾股定理可求得BE的長;
②設BF交AC于T,過T作TR⊥BC于R,過F作FH⊥BC于H,過A作AG⊥BC于G,可求得BG、AG、GH、AC,再由面積法可求得BT、BF,再證明△BTR∽△BFH,結合勾股定理即可求得點F到直線BC的距離;
(2)先找出d的最大值的情形,畫出圖形,由d的最大值可求得m的最大值再根據(jù)d的最小值求得m的最小值,即可得m的范圍.
解:(1)①如圖1,過F作FT⊥BC于T,延長BA交∠BCD的平分線于G,連接BF,EF,AF,
∵ABCD,
∴AB∥CD,AD∥BC,AB=CD,AD=BC,
∵∠ABC=60°,
∴∠BCD=120°,∠ADC=60°,
∵CG平分∠BCD,
∴∠BCG=∠DCG=60°
∴△BCG,△CDH均為等邊三角形,
∴CG=BC=BG=6,∠G=60°,DH=CD=4,
∴AG=AH=2,
∵B、F關于直線AE對稱,
∴AF=AB=4,EF=BE,∠AFE=∠ABC=60°,
∴∠AFG+∠CFE=120°,∠AFG+∠FAG=120°,
∴∠CFE=∠FAG,
∴△CEF∽△GFA,
∴,即:CF=EF,設BE=EF=x,則CF=x,
∵∠CFT=30°,
∴CT=CF=x,FT=x,
∵ET2+FT2=EF2,
∴,
解得:x1=10+ (不符合題意,舍去),x2=10﹣,
∴BE=10﹣2,
②如圖2,設BF交AC于T,過T作TR⊥BC于R,過F作FH⊥BC于H,過A作AG⊥BC于G,連接AF,FC,
∵∠AGB=90°,∠ABC=60°,
∴∠BAG=30°
∴BG= AB=2,AG=2,GC=BC﹣BG=4,
∴AC=,
∵B、F關于AC對稱,
∴BF⊥AC,BT=TF,
由△ABC面積公式可得BTAC=AGBC,
即BT=2×6,
∴BT=,BF=,
在Rt△BCT中,CT=,
∵TRBC=BTCT,即6TR=,
∴TR=,
∵TR⊥BC,FH⊥BC,
∴TR∥FH,
∴△BTR∽△BFH,
∴,
∴FH=2TR=,
故點F到直線BC的距離為
(2)如圖3,作AG⊥BC于G,
當點F、A、G三點共線時,點F到直線BC的距離d最大,
此時點E與點C重合,FG=2 +4,
由(1)知,BG=2,AG=2 ,
∴BF=,
∴BH=BF=,
∵∠BHC=∠BGF=90°,∠CBH=∠FBG,
∴△CBH∽△FBG,
∴,即,
解得:m=8+4 ,
∴m的最大值為8+4 ,
如圖4,作AG⊥BC于G,FH⊥BC于H,FR⊥AG于R,連接AF,
設BF交AC于T,
則AG=2 ,BG=2,CG=BC﹣BG=m-2,
此時點E與點C重合,FH=﹣2,
顯然,FHGR是矩形,
∴RG=FH=﹣2, AR=AG﹣RG=2,
∵B、F關于AC對稱,
∴BF⊥AC,BT=TF,AF=AB=4,
∴RF=GH=,
∴BH=BG+GH=2+ ,
∴BF=,
∴BT=TF=BF=2,
∵△BCT∽△BFH,
∴,即,
解得m=4 ﹣4,
∴m的最小值為4 ﹣4,
綜上所述,4﹣4≤m≤8+4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰中,,.動點在上以每分鐘5個單位長度的速度從點出發(fā)向點移動,過作交邊于點,連結、.設點移動的時間為.
(1)求、兩點的坐標;
(2)計算:當面積最大時,的值;
(3)在(2)的條件下,邊上是否還存在一個點,使得?若存在,請直接寫出點的坐標;若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,DEF分別為△ABC邊ACABBC上的點,∠A=∠1=∠C,DE=DF.下面的結論一定成立的是( )
A. AE=FC B. AE=DE C. AE+FC=AC D. AD+FC=AB
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有一筆直的公路連接、兩地,甲車從地駛往地,速度為每小時60千米,同時乙車從地駛往地,速度為每小時80千米.途中甲車發(fā)生故障,于是停車修理了2.5小時,修好后立即開車駛往地.設甲車行駛的時間為,兩車之間的距離為.已知與的函數(shù)關系的部分圖像如圖所示.
(1)直接寫出點的實際意義.
(2)問:甲車出發(fā)幾小時后發(fā)生故障?
(3)將與的函數(shù)圖象補充完整.(請對畫出的圖象用數(shù)據(jù)作適當?shù)臉俗ⅲ?/span>
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人要某風景區(qū)游玩,每天某一時段開往該景區(qū)有三輛汽車(票價相同),但是他們不清楚這三輛車的舒適程度,也不知道汽車開來的順序,兩人采用了不同的乘車方案:
甲無論如何總是上開來的第一輛車,而乙則是先觀察后上車,當?shù)谝惠v車開來時,他不上車,而是仔細觀察車輛的舒適狀況,如果第二輛車狀況比第一輛好,他就上第二輛車,如果第二輛不比第一輛好,他就上第三輛車.這三輛車的舒適程度為上、中、下三等,請解決下面的問題:
(1)請用畫樹形圖或列表的方法分析這三輛車出現(xiàn)的先后順序,寫出所有可能的結果;(用上中下表示)
(2)分析甲、乙兩人采用的方案,誰的方案使自己坐上上等車的可能性大,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,學校教學樓對面是一幢實驗樓,小朱在教學樓的窗口C測得實驗樓頂部D的仰角為20°,實驗樓底部B的俯角為30°,量得教學樓與實驗樓之間的距離AB=30m.求實驗樓的高BD.(結果精確到1m.參考數(shù)據(jù)tan20°≈0.36,sin20°≈0.34,cos20°≈0.94,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解決問題.
學校要購買A,B兩種型號的足球,按體育器材門市足球銷售價格(單價)計算:若買2個A型足球和3個B型足球,則要花費370元,若買3個A型足球和1個B型足球,則要花費240元.
(1)求A,B兩種型號足球的銷售價格各是多少元/個?
(2)學校擬向該體育器材門市購買A,B兩種型號的足球共20個,且費用不低于1300元,不超過1500元,則有哪幾種購球方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點分別在兩邊上,且,以為直徑作半圓,點是半圓的中點
(1)連接,求證: ;
(2)若, ,求陰影部分面積
(3)若點是的外心,判斷四邊形的形狀,并說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】改革開放40年以來,城鄉(xiāng)居民生活水平持續(xù)快速提升.居民教育、文化和娛樂消費支出持續(xù)增長,已經(jīng)成為居民各項消費支出中僅次于居住、食品煙酒、交通通信后的第四大消費支出.下圖為北京市統(tǒng)計局發(fā)布的2017年和2018年我市居民人均教育、文化和娛樂消費支出的折線圖:
說明:在統(tǒng)計學中,同比是指本期統(tǒng)計數(shù)據(jù)與上一年同期統(tǒng)計數(shù)據(jù)相比較,例如2018年第二季度與2017年第二季度相比較;環(huán)比是指本期統(tǒng)計數(shù)據(jù)與上期統(tǒng)計數(shù)據(jù)相比較,例如2018年第二季度與2018年第一季度相比較.
根據(jù)上述信息,下列結論中錯誤的是( ).
A.2017年第二季度環(huán)比有所提高B.2017年第四季度環(huán)比有所下降
C.2018年第一季度同比有所提高D.2017和2018年支出最高的都是第三季度
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com