數(shù)學(xué)課上,張老師出示圖1和下面的條件:如圖1,兩個(gè)等腰直角三角板ABC和DEF有一條邊在同一條直線l上,DE=2,AB=1.將直線EB繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)45°,交直線AD于點(diǎn)M.將圖1中的三角板ABC沿直線l向右平移,設(shè)C、E兩點(diǎn)間的距離為k.
解答問題:
(1)①當(dāng)點(diǎn)C與點(diǎn)F重合時(shí),如圖2所示,可得的值為       
②在平移過程中,的值為           (用含k的代數(shù)式表示);
(2)將圖2中的三角板ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),原題中的其他條件保持不變.當(dāng)點(diǎn)A落在線段DF上時(shí),如圖3所示,請(qǐng)補(bǔ)全圖形,計(jì)算的值;
(3)將圖1中的三角板ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)α度,0<α≤90,原題中的其他條件保持不變.計(jì)算 的值(用含k的代數(shù)式表示).

解析試題分析:(1)①根據(jù)題意可得EM垂直平分DF,直線AF∥EM,從而轉(zhuǎn)化為,繼而得出結(jié)論;②仿照①的思路進(jìn)行求解即可;
(2)先補(bǔ)全圖形,連接AE,分別求出AM及DM的值,然后可確定比值.
(3)先畫出圖形,然后證明△ABG≌△CBE,繼而推出AG∥DE,△AGM∽△DEM,利用相似三角形的性質(zhì)即可得出答案.
(1)如圖,

∵∠MEB=45°,∠AFB=45°,
∴EM垂直且平分DF,AF∥EM,

②如圖

由①可得;
(2)連接AE,

∵△ABC,△DEF均為等腰直角三角形,DE=2,AB=1,
∴EF=2,BC=1,∠DEF=90°,∠4=∠5=45°
∴DF=2,AC=,∠EFB=90°,
∴DF=2AC,AD=,
∴點(diǎn)A為CD的中點(diǎn),
∴EA⊥DF,EA平分∠DEF,
∴∠MAE=90°,∠AEF=45°,AE=,
∵∠BEM=45°,
∴∠1+∠2=∠3+∠2=45°,
∴∠1=∠3,
∴△AEM∽△FEB,

∴AM=,
∴DM=AD-AM=?

(3)過B作BE的垂線交直線EM于點(diǎn)G,連接AG、BG,
,
∴∠EBG=90°,
∵∠BEM=45°,
∴∠EGB=∠BEM=45°,
∴BE=BG,
∵△ABC為等腰直角三角形,
∴BA=BC,∠ABC=90°,
∴∠1=∠2,
∴△ABG≌△CBE,
∴AG=EC=k,∠3=∠4,
∵∠3+∠6=∠5+∠4=45°,
∴∠6=∠5,
∴AG∥DE,
∴△AGM∽△DEM,

考點(diǎn): 相似形綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,A、B、C分別是線段A1B,B1C,C1A的中點(diǎn),若△ABC的面積是1,那么△A1B1C1的面積   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(1)如圖1,Rt△ABC中,∠B=90°,AB=2BC,現(xiàn)以C為圓心、CB長(zhǎng)為半徑畫弧交邊AC于D,再以A為圓心、AD為半徑畫弧交邊AB于E.求證:.(這個(gè)比值
叫做AE與AB的黃金比.)
(2)如果一等腰三角形的底邊與腰的比等于黃金比,那么這個(gè)等腰三角形就叫做黃金三角形.請(qǐng)你以圖2中的線段AB為腰,用直尺和圓規(guī),作一個(gè)黃金三角形ABC.
(注:直尺沒有刻度!作圖不要求寫作法,但要求保留作圖痕跡,并對(duì)作圖中涉及到的點(diǎn)用字母進(jìn)行標(biāo)注)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在數(shù)學(xué)課上,同學(xué)們研究圖形的拼接問題.
比如:兩個(gè)全等的等腰直角三角形紙片既能拼成一個(gè)大的等腰直角三角形(如圖1),也能拼成一個(gè)正方形(如圖2).

(1)現(xiàn)有兩個(gè)相似的直角三角形紙片,各有一個(gè)角為,恰好可以拼成另一個(gè)含有30°角的直角三角形,那么在原來的兩個(gè)三角形紙片中,較大的與較小的紙片的相似比為________,請(qǐng)畫出拼接的示意圖;
(2)現(xiàn)有一個(gè)矩形恰好由三個(gè)各有一個(gè)角為的直角三角形紙片拼成,請(qǐng)你畫出兩種不同拼法的示意圖.在拼成這個(gè)矩形的三角形中,若每種拼法中最小的三角形的斜邊長(zhǎng)為,請(qǐng)直接寫出每種拼法中最大三角形的斜邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在△ABC中,點(diǎn)D是BC中點(diǎn),點(diǎn)E是AC中點(diǎn),且AD⊥BC,BE⊥AC, BE,AD相交于點(diǎn)G,過點(diǎn)B作BF∥AC交AD的延長(zhǎng)線于點(diǎn)F, DF="6."
(1) 求AE的長(zhǎng);
(2) 求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(1,3)、B(4,2)、C(2,1).

(1)作出與△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo);
(2)以原點(diǎn)O為位似中心,在原點(diǎn)的另一側(cè)畫出△A2B2C2,使,并寫出點(diǎn)A2的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖正方形ABCD,E是BC的中點(diǎn),F在AB上,且BF=,猜想EF與DE的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知在△ABC中,點(diǎn)D、E分別在邊AB和AC上,DE∥BC,;(2)求作向量(不要求寫作法,但要指出所作圖中表示結(jié)論的向量)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,求代數(shù)式的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案