(1)如圖1,Rt△ABC中,∠B=90°,AB=2BC,現(xiàn)以C為圓心、CB長為半徑畫弧交邊AC于D,再以A為圓心、AD為半徑畫弧交邊AB于E.求證:.(這個比值
叫做AE與AB的黃金比.)
(2)如果一等腰三角形的底邊與腰的比等于黃金比,那么這個等腰三角形就叫做黃金三角形.請你以圖2中的線段AB為腰,用直尺和圓規(guī),作一個黃金三角形ABC.
(注:直尺沒有刻度!作圖不要求寫作法,但要求保留作圖痕跡,并對作圖中涉及到的點用字母進(jìn)行標(biāo)注)
(1)證明見解析;(2)作圖見解析.
解析試題分析:(1)利用位置數(shù)表示出AB,AC,BC的長,進(jìn)而得出AE的長,進(jìn)而得出答案.
(2)根據(jù)底與腰之比均為黃金比的等腰三角形,畫圖即可.
試題解析:解:(1)證明:∵Rt△ABC中,∠B=90°,AB=2BC,
∴設(shè)AB=2x,BC=x,則AC=.
∴AD=AE=.∴.
(2)底與腰之比均為黃金比的等腰三角形,如答圖,△ABC即為所求.
考點:1.新定義;2.作圖(應(yīng)用與設(shè)計作圖);3.勾股定理;4.等腰三角形的性質(zhì);5.待定系數(shù)法的應(yīng)用.
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知在△ABC中,AB=AC,BC比AB大3,,點G是△ABC的重心,AG的延長線交邊BC于點D.過點G的直線分別交邊AB于點P、交射線AC于點Q.
(1)求AG的長;
(2)當(dāng)∠APQ=90º時,直線PG與邊BC相交于點M.求的值;
(3)當(dāng)點Q在邊AC上時,設(shè)BP=,AQ=,求關(guān)于的函數(shù)解析式,并寫出它的定義域.[
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,方格紙中有一條美麗可愛的小金魚.
(1)在同一方格紙中,畫出將小金魚圖案繞原點O旋轉(zhuǎn)180°后得到的圖案;
(2)在同一方格紙中,并在軸的右側(cè),將原小金魚圖案原點O為位似中心放大,使它們的位似比為1:2,畫出放大后小金魚的圖案.
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,梯形中,∥,,.一個動點從點出發(fā),以每秒個單位長度的速度沿線段方向運(yùn)動,過點作,交折線段于點,以為邊向右作正方形,點在射線上,當(dāng)點到達(dá)點時,運(yùn)動結(jié)束.設(shè)點的運(yùn)動時間為秒().
(1)當(dāng)正方形的邊恰好經(jīng)過點時,求運(yùn)動時間的值;
(2)在整個運(yùn)動過程中,設(shè)正方形與△的重合部分面積為,請直接寫出與之間的函數(shù)關(guān)系式和相應(yīng)的自變量的取值范圍;
(3)如圖2,當(dāng)點在線段上運(yùn)動時,線段與對角線交于點,將△沿翻折,得到△,連接.是否存在這樣的,使△是等腰三角形?若存在,求出對應(yīng)的的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
數(shù)學(xué)課上,張老師出示圖1和下面的條件:如圖1,兩個等腰直角三角板ABC和DEF有一條邊在同一條直線l上,DE=2,AB=1.將直線EB繞點E逆時針旋轉(zhuǎn)45°,交直線AD于點M.將圖1中的三角板ABC沿直線l向右平移,設(shè)C、E兩點間的距離為k.
解答問題:
(1)①當(dāng)點C與點F重合時,如圖2所示,可得的值為 ;
②在平移過程中,的值為 (用含k的代數(shù)式表示);
(2)將圖2中的三角板ABC繞點C逆時針旋轉(zhuǎn),原題中的其他條件保持不變.當(dāng)點A落在線段DF上時,如圖3所示,請補(bǔ)全圖形,計算的值;
(3)將圖1中的三角板ABC繞點C逆時針旋轉(zhuǎn)α度,0<α≤90,原題中的其他條件保持不變.計算 的值(用含k的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com