【題目】如圖所示,長方形BCDE的各邊分別平行于x軸或y軸,物體甲和物體乙分別由點(diǎn)A(2, 0)同時出發(fā),沿長方形BCDE的邊作環(huán)繞運(yùn)動,物體甲按逆時針方向以1個單位長度秒勻速運(yùn)動,物體乙按順時針方向以2個單位長度秒勻速運(yùn)動,則兩個物體運(yùn)動后的第2020次相遇點(diǎn)的坐標(biāo)是( )
A.(2,0)B.(-1,-1)C.( -2,1)D.(-1, 1)
【答案】D
【解析】
利用行程問題中的相遇問題,由于長方形的邊長為4和2,物體乙是物體甲的速度的2倍,求得每一次相遇的地點(diǎn),找出規(guī)律即可解答;
∵A(2,0),四邊形BCDE是長方形,
∴B(2,1),C(-2,1),D(-2,-1),E(2,-1),
∴BC=4,CD=2,
∴長方形BCDE的周長為,
∵甲的速度為1,乙的速度為2,
∴第一次相遇需要的時間為12÷(1+2)=4(秒),
此時甲的路程為1×4=4,甲乙在(-1,1)相遇,
以此類推,第二次甲乙相遇時的地點(diǎn)為(-1,-1),
第三次為(2,0),
第四次為(-1,1),
第五次為(-1,-1),
第六次為(2,0),
,
∴甲乙相遇時的地點(diǎn)是每三個點(diǎn)為一個循環(huán),
∵,
∴第2020次相遇地點(diǎn)的坐標(biāo)為(-1,1);
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列兩個等式:,,給出定義如下:我們稱使等式 成立的一對有理數(shù),為“共生有理數(shù)對”,記為(,),如:數(shù)對(,),(,),都是“共生有理數(shù)對”.
(1)數(shù)對(,),(,)中是“共生有理數(shù)對”嗎?說明理由.
(2)若(,)是“共生有理數(shù)對”,則(,)是“共生有理數(shù)對”嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用-5、-2、1,三個數(shù)按照給出順序構(gòu)造一組無限循環(huán)數(shù)據(jù)。
(1)求第2018個數(shù)是多少?
(2)求前50個數(shù)的和是多少?
(3)試用含(為正整數(shù))的式子表示出數(shù)“-2所在的位置數(shù);
(4)請你算出第個,第個,第個這三個數(shù)的和?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“星光隧道”是貫穿新牌坊商圈和照母山以北的高端居住區(qū)的重要紐帶,預(yù)計2017年底竣工通車,圖中線段AB表示該工程的部分隧道,無人勘測飛機(jī)從隧道一側(cè)的點(diǎn)A出發(fā),沿著坡度為1:2的路線AE飛行,飛行至分界點(diǎn)C的正上方點(diǎn)D時,測得隧道另一側(cè)點(diǎn)B的俯角為12°,繼續(xù)飛行到點(diǎn)E,測得點(diǎn)B的俯角為45°,此時點(diǎn)E離地面高度EF=700米,則隧道BC段的長度約為( )米.(參考數(shù)據(jù):tan12°≈0.2,cos12°≈0.98)
A.2100
B.1600
C.1500
D.1540
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C,D在同一條直線上,點(diǎn)E,F分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.
(1)求證:四邊形BFCE是平行四邊形;
(2)若AD=10,DC=3,∠EBD=60°,則BE= 時,四邊形BFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠CAB=70°,將△ABC繞點(diǎn)A按逆時針方向旋轉(zhuǎn)一個銳角α到△AB′C′的位置,連接CC′,若CC′∥AB,則旋轉(zhuǎn)角α的度數(shù)為( )
A.40°
B.50°
C.30°
D.35°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等腰三角形,且∠A=40°,那么∠ACB的外角的度數(shù)是
A. 110° B. 140° C. 110°或140° D. 以上都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知菱形ABCD的對角線相交于O,點(diǎn)E,F(xiàn)分別在邊AB、BC上,且BE=BF,射線EO,F(xiàn)O分別交邊CD、AD于G,H.
(1)求證:四邊形EFGH為矩形;
(2)若OA=4,OB=3,求EG的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四川汶川地震災(zāi)后重建中,某公司擬為災(zāi)區(qū)援建一所希望學(xué)校.公司經(jīng)過調(diào)查了解:甲、乙兩個工程隊有能力承包建校工程,甲工程隊單獨(dú)完成建校工程的時間是乙工程隊的1.5倍,甲、乙兩隊合作完成建校工程需要72天.
(1)甲、乙兩隊單獨(dú)完成建校工程各需多少天?
(2)在施工過程中,該公司派一名技術(shù)人員在現(xiàn)場對施工質(zhì)量進(jìn)行全程監(jiān)督,每天需要補(bǔ)助100元.若由甲工程隊單獨(dú)施工時平均每天的費(fèi)用為0.8萬元.現(xiàn)公司選擇了乙工程隊,要求其施工總費(fèi)用不能超過甲工程隊,則乙工程隊單獨(dú)施工時平均每天的費(fèi)用最多為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com