【題目】已知BD垂直平分AC,∠BCD=∠ADFAF⊥AC,

1)證明四邊形ABDF是平行四邊形;

2)若AF=DF=5AD=6,求AC的長(zhǎng).

【答案】見(jiàn)解析

【解析】試題分析:(1)先證得△ADB≌△CDB求得∠BCD=∠BAD,從而得到∠ADF=∠BAD,所以AB∥FD,因?yàn)?/span>BD⊥ACAF⊥AC,所以AF∥BD,即可證得.

2)先證得平行四邊形是菱形,然后根據(jù)勾股定理即可求得.

試題解析:(1)證明:∵BD垂直平分AC,

∴AB=BC,AD=DC,

△ADB△CDB中,

,

∴△ADB≌△CDBSSS

∴∠BCD=∠BAD

∵∠BCD=∠ADF,

∴∠BAD=∠ADF

∴AB∥FD,

∵BD⊥ACAF⊥AC,

∴AF∥BD,

四邊形ABDF是平行四邊形,

2)解:四邊形ABDF是平行四邊形,AF=DF=5,

∴ABDF是菱形,

∴AB=BD=5

∵AD=6,

設(shè)BE=x,則DE=5-x,

∴AB2-BE2=AD2-DE2

52-x2=62-5-x2

解得:x=,

AC=2AE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC與△A′B′C′中,有下列條件:(1) ,(2) ;(3)∠A=∠A′;(4)∠C=∠C′,如果從中任取兩個(gè)條件組成一組,那么能判斷△ABC∽△A′B′C′的共有(
A.1組
B.2組
C.3組
D.4組

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

小明在一本課外讀物上看到一道有意思的數(shù)學(xué)題:例1、解不等式:,根據(jù)絕對(duì)值的幾何意義,到原點(diǎn)距離小于1的點(diǎn)在數(shù)軸上集中在-1+1之間,如圖:

所以,該不等式的解集為-1<x<1.

因此,不等式的解集為x<-1x>1.

根據(jù)以上方法小明繼續(xù)探究:例2:求不等式:的解集,即求到原點(diǎn)的距離大于2小于5的點(diǎn)的集合就集中在這樣的區(qū)域內(nèi),如圖:

所以,不等式的解集為-5<x<-22<x<5.

仿照小明的做法解決下面問(wèn)題:

(1)不等式的解集為____________.

(2)不等式的解集是____________.

(3)求不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別以△ABC的兩條邊為邊做平行四邊形,所做的平行四邊形有____ __個(gè);

平行四邊形第四個(gè)頂點(diǎn)的坐標(biāo)是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線(xiàn)為x軸,建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),若拋物線(xiàn)y= x2+k與扇形OAB的邊界總有兩個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電器經(jīng)營(yíng)業(yè)主兩次購(gòu)進(jìn)一批同種型號(hào)的掛式空調(diào)和電風(fēng)扇,第一次購(gòu)進(jìn)8臺(tái)空調(diào)和20臺(tái)電風(fēng)扇;第二次購(gòu)進(jìn)10臺(tái)空調(diào)和30臺(tái)電風(fēng)扇.
若第一次用資金17400元,第二次用資金22500元,求掛式空調(diào)和電風(fēng)扇每臺(tái)的采購(gòu)價(jià)各是多少元?
的條件下,若該業(yè)主計(jì)劃再購(gòu)進(jìn)這兩種電器70臺(tái),而可用于購(gòu)買(mǎi)這兩種電器的資金不超過(guò)30000元,問(wèn)該經(jīng)營(yíng)業(yè)主最多可再購(gòu)進(jìn)空調(diào)多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知RtABC中,∠ACB=90°,CA=CB,DAC上一點(diǎn),EBC的延長(zhǎng)線(xiàn)上,且AE=BD,BD的延長(zhǎng)線(xiàn)與AE交于點(diǎn)F.試通過(guò)觀察、測(cè)量、猜想等方法來(lái)探索BFAE有何特殊的位置關(guān)系,并說(shuō)明你猜想的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從熱氣球C處測(cè)得地面A、B兩點(diǎn)的俯角分別是30°、45°,如果此時(shí)熱氣球C處的高度CD為100米,點(diǎn)A、D、B在同一直線(xiàn)上,則AB兩點(diǎn)的距離是( )

A.200米
B.200
C.220
D.100( +1)米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校七年級(jí)四個(gè)班的學(xué)生在植樹(shù)節(jié)這天共義務(wù)植樹(shù)(6a-3b)棵,一班植樹(shù)a棵,二班植樹(shù)的棵數(shù)比一班的兩倍少b棵,三班植樹(shù)的棵數(shù)比二班的一半多1棵

(1)求三班的植樹(shù)棵數(shù)(用含a,b的式子表示);

(2)求四班的植樹(shù)棵數(shù)(用含a,b的式子表示);

(3)若四個(gè)班共植樹(shù)54棵,求二班比三班多植樹(shù)多少棵?

查看答案和解析>>

同步練習(xí)冊(cè)答案