【題目】某校七年級四個班的學(xué)生在植樹節(jié)這天共義務(wù)植樹(6a-3b)棵,一班植樹a棵,二班植樹的棵數(shù)比一班的兩倍少b棵,三班植樹的棵數(shù)比二班的一半多1棵

(1)求三班的植樹棵數(shù)(用含a,b的式子表示);

(2)求四班的植樹棵數(shù)(用含a,b的式子表示);

(3)若四個班共植樹54棵,求二班比三班多植樹多少棵?

【答案】(1)[(2a-b)+1]棵;(2)(2a-b-1)棵;(3)8棵

【解析】

試題分析:(1)由一班植樹a棵,根據(jù)二班植樹的棵數(shù)比一班的兩倍少b棵得出二班植樹2a-b棵,根據(jù)三班植樹的棵數(shù)比二班的一半多1棵得出三班植樹的棵數(shù)為(2a-b)+1;

(2)利用四個班植樹的總棵樹減去三個班植樹的棵樹得出四班的植樹棵數(shù);

(3)代入54,求得a、b的關(guān)系,進(jìn)一步列出二班比三班多植樹的棵樹,整理得出答案即可

試題解析:(1)由題意得二班植樹:(2a-b)棵,三班植樹:[(2a-b)+1]棵;

(2)四班植樹:6a-3b-a-2a+b-(2a-b)-1=(2a-b-1)棵;

(3)由題意得6a-3b=54,即2a-b=18,則b=2a-18,

二班比三班多:2a-b-(2a-b)-1=a-b-1=8棵

答:二班比三班多植樹8棵

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,

1)證明四邊形ABDF是平行四邊形;

2)若AF=DF=5,AD=6,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中考體育測試滿分為40分,某校九年級進(jìn)行了中考體育模擬測試,隨機(jī)抽取了部分學(xué)生的考試成績進(jìn)行統(tǒng)計(jì)分析,并把分析結(jié)果繪制成如下兩幅統(tǒng)計(jì)圖.試根據(jù)統(tǒng)計(jì)圖中提供的數(shù)據(jù),回答下列問題:
(1)抽取的樣本中,成績?yōu)?9分的人數(shù)有人;
(2)抽取的樣本中,考試成績的中位數(shù)是分,眾數(shù)是分;
(3)若該校九年級共有500名學(xué)生,試根據(jù)這次模擬測試成績估計(jì)該校九年級將有多少名學(xué)生能得到滿分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ABC=∠BAD,添加下列條件還不能判定△ABC≌△BAD的是( )

A.AC=BD
B.∠CAB=∠DBA
C.∠C=∠D
D.BC=AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,點(diǎn)H為垂足.設(shè)AB=x,AD=y,則y關(guān)于x的函數(shù)關(guān)系用圖象大致可以表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了綠化校園,計(jì)劃購買一批榕樹和香樟樹,經(jīng)市場調(diào)查,榕樹的單價比香樟樹少20,購買3棵榕樹和2棵香樟樹共需340.

(1)榕樹和香樟樹的單價各是多少?

(2)根據(jù)學(xué)校實(shí)際情況,需購買兩種樹苗共150,總費(fèi)用不超過10840,且購買香樟樹的棵數(shù)不少于榕樹的1.5,請你算算該校本次購買榕樹和香樟樹共有哪幾種方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的圓心在定角∠αα180°)的角平分線上運(yùn)動,且⊙O∠α的兩邊相切,圖中陰影部分的面積S關(guān)于⊙O的半徑rr0)變化的函數(shù)圖象大致是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, ∠ADE+∠BCF=180°,BE平分∠ABC, ∠ABC=2∠E.

(1)ADBC平行嗎?請說明理由;

(2)ABEF的位置關(guān)系如何?為什么?

(3)AF平分∠BAD,試說明: ∠E+∠F=90°.

(:本題第(1)(2)小題在下面的解答過程的空格內(nèi)填寫理由或數(shù)學(xué)式;(3)小題要寫出解題過程)

:(1) ADB∥C,理由如下:

∵∠ADE+∠BCF=180°(已知) ,

∠ADE+∠ADF=180°(平角的定義),

∴∠ADF__________ (______________________),

AD∥BC (__________________________);

(2)ABEF的位置關(guān)系是:互相平行.

BE平分∠ABC(已知),

A∠BC=2∠ABE(角平分線定義).

又∵∠ABC=2∠E(已知),

2∠E=2∠ABE (____________________),

∴∠E=∠ABE(____________________),

_____________ (________________________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 .請結(jié)合題意填空,完成本題的解答.
(1)解不等式①,得:;
(2)解不等式②,得:;
(3)把不等式①和②的解集在數(shù)軸上表示出來;
(4)不等式組的解集為:

查看答案和解析>>

同步練習(xí)冊答案