【題目】已知:如圖,在四邊形中,.點(diǎn)為邊上一點(diǎn),將沿直線折疊,使點(diǎn)落在四邊形對角線上的點(diǎn)處,的延長線交直線于點(diǎn)

點(diǎn)可以是的中點(diǎn)嗎?請說明理由;

求證:;

設(shè),.當(dāng)四邊形為平行四邊形時(shí),求,,應(yīng)滿足的關(guān)系.

【答案】(1)點(diǎn)不可以是的中點(diǎn);理由見解析;(2)見解析;(3).理由見解析.

【解析】

(1)在直角三角形中比較斜邊直角邊即可,(2)進(jìn)而證明推出,在等腰得到,即可證明三角形相似,(3),證明,推出證明列出比例式,即可解題.

解:點(diǎn)不可以是的中點(diǎn);理由如下:

根據(jù)題意得:,,

中,,

因此點(diǎn)不可以是的中點(diǎn).

證明:

沿直線折疊,

,∴

為等腰三角形.

,,

,

,

解:.理由如下:

過點(diǎn),如圖所示:

四邊形為平行四邊形,

,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下定義:若⊙C上存在一個(gè)點(diǎn)M,使得MP=MC,則稱點(diǎn)P為⊙C的“等徑點(diǎn)”,已知點(diǎn)D(,),E(0,2),F(xiàn)(﹣2,0).

(1)當(dāng)⊙O的半徑為1時(shí),

①在點(diǎn)D,E,F(xiàn)中,⊙O的“等徑點(diǎn)”是哪幾個(gè)點(diǎn);

②作直線EF,若直線EF上的點(diǎn)T(m,n)是⊙O的“等徑點(diǎn)”,求m的取值范圍.

(2)過點(diǎn)E作EG⊥EF交x軸于點(diǎn)G,若△EFG各邊上所有的點(diǎn)都是某個(gè)圓的“等徑點(diǎn)”,求這個(gè)圓的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程有唯一實(shí)數(shù)解,且反比例函數(shù)的圖象在每個(gè)象限內(nèi)的增大而增大,那么反比例函數(shù)的關(guān)系式為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點(diǎn)D,E是⊙O上一點(diǎn),且∠AED=45°.

(1)試判斷CD與⊙O的位置關(guān)系,并說明理由.

(2)若BC=2.求陰影部分的面積.(結(jié)果保留π的形式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮要利用廢紙板做一個(gè)三棱柱形狀的無蓋的筆筒,設(shè)計(jì)三棱柱的立體模型如圖所示.

(1)請畫出該立體模型的三視圖;

(2)該筆筒至少要用多少廢紙板?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十八屆五中全會出臺了全面實(shí)施一對夫婦可生育兩個(gè)孩子的政策,這是黨中央站在中華民族長遠(yuǎn)發(fā)展的戰(zhàn)略高度作出的促進(jìn)人口長期均衡發(fā)展的重大舉措. 二孩政策出臺后,某家庭積極響應(yīng)政府號召,準(zhǔn)備生育兩個(gè)小孩(假設(shè)生男生女機(jī)會均等,且與順序無關(guān)).

(1)該家庭生育兩胎,假設(shè)每胎都生育一個(gè)小孩,求這兩個(gè)小孩恰好都是女孩的概率;

(2)該家庭生育兩胎,假設(shè)第一胎生育一個(gè)小孩,且第二胎生育一對雙胞胎,求這三個(gè)小孩中恰好是2女1男的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),點(diǎn)的坐標(biāo)為,與軸交于點(diǎn),作直線.動點(diǎn)軸上運(yùn)動,過點(diǎn)軸,交拋物線于點(diǎn),交直線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為

(Ⅰ)求拋物線的解析式和直線的解析式;

(Ⅱ)當(dāng)點(diǎn)在線段上運(yùn)動時(shí),求線段的最大值;

(Ⅲ)當(dāng)以、為頂點(diǎn)的四邊形是平行四邊形時(shí),直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】服裝廠批發(fā)某種服裝,每件成本為65元,規(guī)定不低于10件可以批發(fā),其批發(fā)價(jià)y(元/件)與批發(fā)數(shù)量x(件)(x為正整數(shù))之間所滿足的函數(shù)關(guān)系如圖所示.

(1)求y與x之間所滿足的函數(shù)關(guān)系式,并寫出x的取值范圍;

(2)設(shè)服裝廠所獲利潤為w(元),若10≤x≤50(x為正整數(shù)),求批發(fā)該種服裝多少件時(shí),服裝廠獲得利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC是等邊三角形,點(diǎn)D是射線BC上的一個(gè)動點(diǎn)(點(diǎn)D不與點(diǎn)BC重合),△ADE是以AD為邊的等邊三角形,過點(diǎn)EBC的平行線,交射線AC于點(diǎn)G,連接BE

1)如圖1所示,當(dāng)點(diǎn)D在線段BC上時(shí),求證:四邊形BCGE是平行四邊形;

2)如圖2所示,當(dāng)點(diǎn)DBC的延長線上時(shí),(1)中的結(jié)論是否成立?并請說明理由;

3)當(dāng)點(diǎn)D運(yùn)動到什么位置時(shí),四邊形BCGE是菱形?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案