【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點,點,點.

(Ⅰ)如圖①,求AB的長;

(Ⅱ)如圖②,把圖①中的繞點B順時針旋轉(zhuǎn),使點O的對應(yīng)點AM恰好落在OA延長線上,N是點A旋轉(zhuǎn)后的對應(yīng)點.

①求證:;②求點N的坐標(biāo);

(Ⅲ)點COB的中點,點D為線段OA上的動點,在繞點B順時針旋轉(zhuǎn)過程中,點D的對應(yīng)點是P,求線段CP長的取值范圍(直接寫出結(jié)果).

【答案】(Ⅰ);(Ⅱ)①見解析,②;(Ⅲ).

【解析】

)過A,垂足為C,根據(jù)點,點得出ACBC的長,再根據(jù)勾股得出AB的長

)①根據(jù)旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)等腰三角形的性質(zhì)可得,從而得出,繼而得出結(jié)論

②過N軸,垂足為E.連接AN,根據(jù)旋轉(zhuǎn)的性質(zhì)和一組對邊平行且相等的四邊形是平行四邊形得出四邊形AOBN是平行四邊形,得出,再根據(jù)勾股定理求出BE,從而求出點N的坐標(biāo);

)過BCPAOP,以B為圓心BP為半徑畫圓交BCP1,和以B為圓心BO為半徑畫圓交OB的延長線于P2,得出CP的最大和最小值解答即可;

解:()過A,垂足為C,

,

.

中,

)①由(I)得

由旋轉(zhuǎn)得

②過N軸,垂足為E.連接AN

∴四邊形AOBN是平行四邊形。

中,.

III)如圖,過BCPAOP,以B為圓心BP為半徑畫圓交BCP1, CP1有最小值,

此時

BP=,∴BP1=,
CP1的最小值為 -3=;

B為圓心BO為半徑畫圓交OB的延長線于P2,,CP 2有最大值;
此時CP2=BC +BP2=3+6=9

線段CP長的取值范圍: .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙中,為直徑,、分別切⊙于點、

1)如圖①,若,求的大;

2)如圖②,過點,交于點,交⊙于點,若,求的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+c+1

1當(dāng)b=1時,求這個二次函數(shù)的對稱軸的方程;

2c=b22b,問:b為何值時,二次函數(shù)的圖象與x軸相切?

3若二次函數(shù)的圖象與x軸交于點Ax1,0),Bx2,0),且x1x2,b0,與y軸的正半軸交于點M,以AB為直徑的半圓恰好過點M,二次函數(shù)的對稱軸lx軸、直線BM、直線AM分別交于點DE、F,且滿足=,求二次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在△ABC和△EDC中,ACCECBCD,∠ACB=∠ECDABCE交于F,EDABBC分別交于M、H

1)求證:CFCH

2)如圖(2),△ABC不動,將△EDC繞點C旋轉(zhuǎn)到∠BCE=時,試判斷四邊形ACDM是什么四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊中,DBC延長線上一點,E,F分別是BC,AD的中點,若,則線段EF的長是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADBCD,BD=ADDG=DC,EF分別是BG,AC的中點.

1)求證:DE=DF,DEDF;

2)連接EF,若AC=10,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】麗江布農(nóng)鈴,是一種極富特色的、形狀同馬幫的馬鈴的掛件.這種馬幫文化商品,是純手工制作.精致小巧的青銅鈴鐺下系有一塊圓形木塊,手繪著各種各樣的畫.某商店需要購進甲、乙兩種布農(nóng)鈴共300件,一件甲種布農(nóng)鈴進價為340元,售價為400元,一件乙種布農(nóng)鈴進價為380元,售價為460.(注:利潤=售價-進價)

1)若商店計劃銷售完這批布農(nóng)鈴后能獲利21600元,問甲、乙兩種布農(nóng)鈴應(yīng)分別購進多少件?

2)若商店計劃投入資金110000元,則能購進甲種布農(nóng)鈴多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】任大叔決定在承包的荒山上種櫻桃樹,第一次用1000元購進了一批樹苗,第二次又用1000元購進該種樹苗,但這次每棵樹苗的進價是第一次進價的2,購進數(shù)量比第次少了100棵;

(1)求第一次每棵樹苗的進價是多少元?

(2)一年后,樹苗的成活率為85%,每棵櫻桃樹平均產(chǎn)櫻桃30,任大叔將兩批櫻桃樹所產(chǎn)櫻桃按同一價格全部銷售完畢后,獲利不低于89800,求每斤櫻桃的售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)a≠0)的圖象如圖所示,則下列命題中正確的是( 。

A. a bc

B. 一次函數(shù)y=ax +c的圖象不經(jīng)第四象限

C. mam+b+bam是任意實數(shù))

D. 3b+2c0

查看答案和解析>>

同步練習(xí)冊答案