【題目】如圖,中,, 在線段的延長線上, 連接AD,CD=1BC=12,∠DAB=30°, __________

【答案】4

【解析】

過點BBEAD于點EAHBCH.設AB=AC=x.根據(jù)AE+DE=AD,分別利用勾股定理求出AEDE,AD,構建方程即可解決問題.

解:過點BBEAD于點E,AHBCH.設AB=AC=x

Rt△ABE中,

∵∠BAE=30°AB=x,

BE=AB=x,AE=BE= x,

AB=AC,AHBC

CH=BH=6,

Rt△AHB中,AH2=x2-62,

Rt△DBE中,DE=,

Rt△ADH中,AD=

AE+DE=AD

,

整理得:x4-13×51x-(12×13)2=0

解得x2=13×4813×3(舍去),

x0,

x=4

經(jīng)檢驗:x=4是無理方程的解,

AC=4

故答案為4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】實踐操作

如圖,是直角三角形,,利用直尺和圓規(guī)按下列要求作圖,并在圖中表明相應的字母.(保留作圖痕跡,不寫作法)

1)①作的平分線,交于點;②以為圓心,為半徑作圓.

綜合運用

在你所作的圖中,

2與⊙的位置關系是   ;(直接寫出答案)

3)若,,求⊙的半徑.

4)在(3)的條件下,求以為軸把ABC旋轉一周得到的圓錐的側面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在同一直角坐標系中,二次函數(shù)y=x2-2x-3的圖象與兩坐標軸分別交于點A點 B和點C,一次函數(shù)的圖象與拋物線交于B、C兩點.

(1)將這個二次函數(shù)化為的形式為 。

(2)當自變量滿足 時,兩函數(shù)的函數(shù)值都隨增大而增大。

(3)當自變量滿足 時,一次函數(shù)值大于二次函數(shù)值。

(4)當自變量滿足 時,兩個函數(shù)的函數(shù)值的積小于0。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=ax2+4x+c(a≠0)經(jīng)過點A(3,﹣4)和B(0,2).

(1)求拋物線的表達式和頂點坐標;

(2)將拋物線在A、B之間的部分記為圖象M(含A、B兩點).將圖象M沿直線x=3翻折,得到圖象N.若過點C(9,4)的直線y=kx+b與圖象M、圖象N都相交,且只有兩個交點,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程mx2+(3m+1)x+3=0.

(1)求證:該方程有兩個實數(shù)根;

(2)如果拋物線y=mx2+(3m+1)x+3x軸交于A、B兩個整數(shù)點(點A在點B左側),且m為正整數(shù),求此拋物線的表達式;

(3)在(2)的條件下,拋物線y=mx2+(3m+1)x+3y軸交于點C,點B關于y軸的對稱點為D,設此拋物線在﹣3≤x≤﹣之間的部分為圖象G,如果圖象G向右平移n(n>0)個單位長度后與直線CD有公共點,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線軸交于點和點軸交于點,過點的直線交拋物線的另一個點為點,的橫坐標為

的值.

在直線下方的拋物線上任一點,點的橫坐標為過點軸,交于點求出的函數(shù)關系式,并直接寫出的取值范圍.

問的條件下,過點,垂足為點,連接, 成面積比為的兩個三角形,求出此時的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,函數(shù)圖象上點的橫坐標與其縱坐標的和稱為點坐標和,而圖象上所有點的坐標和中的最小值稱為圖象智慧數(shù).如圖:拋物線上有一點,則點坐標和6,當時,該拋物線的智慧數(shù)0

1)點在函數(shù)的圖象上,點坐標和 ;

2)求直線智慧數(shù)

3)若拋物線的頂點橫、縱坐標的和是2,求該拋物線的智慧數(shù);

4)設拋物線頂點的橫坐標為,且該拋物線的頂點在一次函數(shù)的圖象上;當時,拋物線智慧數(shù)2,求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線(mn 為常數(shù))

1)若拋物線的的對稱軸為直線 x=1,且經(jīng)過點(0,-1),求 m,n 的值;

2)若拋物線上始終存在不重合的兩點關于原點對稱,求 n 的取值范圍;

3)在(1)的條件下,存在正實數(shù) ab( ab),當 axb 時,恰好有,請直接寫出 a,b 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A0,4)、B(﹣30),將線段AB沿x軸正方向平移n個單位得到菱形ABCD

1)畫出菱形ABCD,并直接寫出n的值及點D的坐標;

2)已知反比例函數(shù)y的圖象經(jīng)過點D,ABMN的頂點My軸上,Ny的圖象上,求點M的坐標;

3)若點A、C、D到某直線l的距離都相等,直接寫出滿足條件的直線解析式.

查看答案和解析>>

同步練習冊答案