【題目】若3a2﹣mbn與﹣a4b5為同類項,則m﹣n的值為_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)請寫出△ABC各點的坐標(biāo);
(2)求出△ABC的面積;
(3)若把△ABC向上平移2個單位,再向右平移2個單位得到△A'B'C',在圖中畫出△ABC變化位置,并寫出A'、B'、C'的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC.
(1)用直尺和圓規(guī)作∠A的平分線所在的直線和邊BC的垂直平分線(要求:不寫作法,保留畫圖痕跡);
(2)設(shè)(1)中的直線和直線交于點P,過點P作PE⊥AB,垂足為點E,過點P作PF⊥AC交AC的延長線于點F.請?zhí)骄?/span>BE和CF的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)了二次根式后,小明同學(xué)發(fā)現(xiàn)有的二次根式可以寫成另一個二次根式的平方的形式.
比如: .善于動腦的小明繼續(xù)探究:
當(dāng)為正整數(shù)時,若,則有,所以, .
請模仿小明的方法探索并解決下列問題:
(1)當(dāng)為正整數(shù)時,若,請用含有的式子分別表示,得: , ;
(2)填空:
- ;
(3)若,且為正整數(shù),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將下面的解答過程補充完整:
如圖,已知EF⊥AB,CD⊥AB,AC⊥BC,,求證:DG⊥BC
證明:∵ EF⊥AB,CD⊥AB(已知)
∴(___________)
∴EF∥CD (_____________________________)
∴____(_________________________)
∵(已知)
∴_____(______________________)
∴DG∥AC(______________________________)
∴ (_____________________________)
∵AC⊥BC(已知)
∴
∴,即DG⊥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形ABC(頂點是網(wǎng)格線的交點的三角形)的頂點A,C的坐標(biāo)分別為(, ),(, ).
(1)請在如圖所示的網(wǎng)格平面內(nèi),作出平面直角坐標(biāo)系;
(2)請作出關(guān)于軸對稱的;
(3)寫出點的坐標(biāo)為___ __;
(4)△ABC的面積為__ _ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的有( )個
①1乘以任何有理數(shù)都等于這個數(shù)本身:②0乘以任何數(shù)的積均為0:③-1乘以任何有理數(shù)都等于這個有理數(shù)的相反數(shù);④一個數(shù)的倒數(shù)與本身相等的數(shù)只有1
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【再現(xiàn)】如圖①,在△ABC中,點D,E分別是AB,AC的中點,可以得到:DE∥BC,且DE=BC.(不需要證明)
【探究】如圖②,在四邊形ABCD中,點E,F,G,H分別是AB,BC,CD,DA的中點,判斷四邊形EFGH的形狀,并加以證明.
【應(yīng)用】在(1)【探究】的條件下,四邊形ABCD中,滿足什么條件時,四邊形EFGH是菱形?你添加的條件是: .(只添加一個條件)
(2)如圖③,在四邊形ABCD中,點E,F,G,H分別是AB,BC,CD,DA的中點,對角線AC,BD相交于點O.若AO=OC,四邊形ABCD面積為5,則陰影部分圖形的面積和為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com