如圖,已知△ABC,AB=AC,且周長為16,底邊上的高AD=4,求這個三角形各邊的長.
如圖,∵AD是底邊BC上的高,
∴BD=
1
2
BC,
設(shè)BD=x,
∵△ABC的周長為16,
∴AB+BD=
1
2
×16=8,
∴AB=8-x,
在Rt△ABD中,AB2=BD2+AD2,
即(8-x)2=x2+42,
解得x=3,
∴AB=8-3=5,BC=2BD=2×3=6,
∴△ABC的邊AB、AC的長度均為5,邊BC的長度為6.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線l上有三個正方形a,b,c,若a,b的面積分別為5和11,則c的面積為(  )
A.6B.5C.11D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我校位于“湘桂鐵路”之側(cè),全校師生深受火車噪聲之害.周末,小明為了了解學(xué)校受火車噪聲影響的情況作了如下的調(diào)查:繪出了學(xué)校與鐵路的平面示意圖,如圖,并從網(wǎng)上得知當火車經(jīng)過時,距離鐵路200m內(nèi)會受到火車噪聲的干擾.
請你根據(jù)小明所得到的信息:
(1)請通過計算說明學(xué)校為什么會受到火車噪聲的影響;
(2)若火車的速度為32m/s,一列火車經(jīng)過時,求學(xué)校受影響的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知等腰三角形底邊長為10cm,腰長為13cm,則腰上的高為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

李老師在與同學(xué)進行“螞蟻怎樣爬最近”的課題研究時設(shè)計了以下三個問題,請你根據(jù)下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長.
(1)如圖1,正方體的棱長為5cm一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處;
(2)如圖2,圓錐的母線長為4cm,底面半徑r=
4
3
cm,一只螞蟻欲從圓錐的底面上的點A出發(fā),沿圓錐側(cè)面爬行一周回到點A.
(3)如圖3,是一個沒有上蓋的圓柱形食品盒,一只螞蟻在盒外表面的A處,它想吃到盒內(nèi)表面對側(cè)中點B處的食物,已知盒高10cm,底面圓周長為32cm,A距下底面3cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

11世紀的一位阿拉伯數(shù)學(xué)家曾提出一個“鳥兒捉魚”的問題
“小溪邊長著兩棵棕櫚樹,恰好隔岸相望.一棵樹高是30肘尺(肘尺是古代的長度單位),另外一棵高20肘尺;兩棵棕櫚樹的樹干間的距離是50肘尺.每棵樹的樹頂上都停著一只鳥.忽然,兩只鳥同時看見棕櫚樹間的水面上游出一條魚,它們立刻飛去抓魚,并且同時到達目標.問這條魚出現(xiàn)的地方離開比較高的棕櫚樹的樹根有多遠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,馬路邊一根電線桿為5.4m,被一輛卡車從離地面1.5m處撞斷,倒下的電線桿頂部是否會落在離它的底部4m的快車道上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

劉衛(wèi)同學(xué)在一次課外活動中,用硬紙片做了兩個直角三角形,見圖①、②.圖①中,∠B=90°,∠A=30°,BC=6cm;圖②中,∠D=90°,∠E=45°,DE=4cm.圖③是劉衛(wèi)同學(xué)所做的一個實驗:他將△DEF的直角邊DE與△ABC的斜邊AC重合在一起,并將△DEF沿AC方向移動.在移動過程中,D、E兩點始終在AC邊上(移動開始時點D與點A重合).
(1)在△DEF沿AC方向移動的過程中,劉衛(wèi)同學(xué)發(fā)現(xiàn):F、C兩點間的距離逐漸______.(填“不變”、“變大”或“變小”)
(2)劉衛(wèi)同學(xué)經(jīng)過進一步地研究,編制了如下問題:
問題①:當△DEF移動至什么位置,即AD的長為多少時,F(xiàn)、C的連線與AB平行?
問題②:當△DEF移動至什么位置,即AD的長為多少時,以線段AD、FC、BC的長度為三邊長的三角形是直角三角形?
問題③:在△DEF的移動過程中,是否存在某個位置,使得∠FCD=15°?如果存在,求出AD的長度;如果不存在,請說明理由.
請你分別完成上述三個問題的解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,EFGH是正方形ABCD的內(nèi)接四邊形,兩條對角線EG和FH相交于點O,且它們所夾的銳角為θ,∠BEG與∠CFH都是銳角,已知EG=k,F(xiàn)H=l,四邊形EFGH的面積為S,
(1)求證:sinθ=
2S
kl
;
(2)試用k、l、S來表示正方形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案