【題目】如圖,拋物線y=+bx+c與x軸交于點(diǎn)A和點(diǎn)B(點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B在原點(diǎn)的右側(cè)),與y軸交于點(diǎn)C,且OC=2OA=2,點(diǎn)D是直線BC下方拋物線上一動(dòng)點(diǎn).
(1)求出拋物線的解析式;
(2)連接AD和BC,AD交BC于點(diǎn)E,當(dāng)S△ABE:S△BDE=5:4時(shí),求點(diǎn)D的坐標(biāo);
(3)點(diǎn)F為y軸上的一點(diǎn),在(2)的條件下,求DF+OF的最小值.
【答案】(1)y=x2﹣x﹣2;(2)D(2,﹣3);(3)
【解析】
(1)OC=2OA=2,則點(diǎn)A、C的坐標(biāo)分別為:(-1,0)、(0,-2),則c=-2,將點(diǎn)A的坐標(biāo)代入拋物線表達(dá)式,即可求解;
(2)S△ABE:S△BDE=5:4,則AE:ED=5:4,AM∥HD,則AM:HD=AE:ED=5:4,則HD=2,即可求解;
(3)作一條與y軸夾角為α的直線AH,使tan∠HOF==tanα,則sin,過點(diǎn)D作DH⊥AH交AH于點(diǎn)H,交y軸于點(diǎn)F,則點(diǎn)F為所求點(diǎn),即可求解.
(1)OC=2OA=2,
則點(diǎn)A、C的坐標(biāo)分別為:(﹣1,0)、(0,﹣2),
則c=﹣2,
將點(diǎn)A的坐標(biāo)代入拋物線表達(dá)式并解得:b=﹣,
故拋物線的表達(dá)式為:y=x2﹣x﹣2;
(2)由點(diǎn)B、C的坐標(biāo)得,直線BC的表達(dá)式為:y=x﹣2,
S△ABE:S△BDE=5:4,則AE:ED=5:4,
分別過點(diǎn)A、D作y軸的平行線分別交BC于點(diǎn)M、H,
∴AM∥HD,當(dāng)x=﹣1時(shí),y=x﹣2=﹣,
∵AM∥HD,∴AM:HD=AE:ED=5:4,
∴HD=2,
設(shè)點(diǎn)D(x, x2﹣x﹣2),則點(diǎn)H(x, x﹣2),
DH=x﹣2﹣(x2﹣x﹣2)=2,解得:x=2,
故點(diǎn)D(2,﹣3);
(3)作一條與y軸夾角為α的直線AH,使tan∠HOF==tanα,則sin,
過點(diǎn)D作DH⊥AH,交AH于點(diǎn)H,交y軸于點(diǎn)F,則點(diǎn)F為所求點(diǎn),
DF+OF=FD+HF最小,
過點(diǎn)D作x軸的平行線交y軸于點(diǎn)N,則∠FDN=α,
則直線FD的表達(dá)式為:y=﹣x+n,
將點(diǎn)D的坐標(biāo)代入上式并解得:
直線DF的表達(dá)式為:y=﹣x﹣,故點(diǎn)F(0,﹣),
則OF=,
DF+OF的最小值=FD+HF=+×=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”,為保護(hù)生態(tài)環(huán)境,A,B兩村準(zhǔn)備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表:
村莊 | 清理養(yǎng)魚網(wǎng)箱人數(shù)/人 | 清理捕魚網(wǎng)箱人數(shù)/人 | 總支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若兩村清理同類漁具的人均支出費(fèi)用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費(fèi)用各是多少元;
(2)在人均支出費(fèi)用不變的情況下,為節(jié)約開支,兩村準(zhǔn)備抽調(diào)40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,且清理養(yǎng)魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某,F(xiàn)有九年級(jí)學(xué)生800名,為了了解這些學(xué)生的體質(zhì)健康情況,學(xué)校在開學(xué)初從中隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試(測(cè)試結(jié)果分成優(yōu)秀、良好、合格、不合格四個(gè)等級(jí)),并將測(cè)試結(jié)果繪制成如圖所示兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中提供的信息解答下列問題:
(1)本次抽取的學(xué)生人數(shù)共有____名,在扇形統(tǒng)計(jì)圖中,“合格”等級(jí)所對(duì)應(yīng)的圓心角的度數(shù)是______;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)估計(jì)九年級(jí)學(xué)生中達(dá)到“合格”以上(含合格)等級(jí)的學(xué)生一共有多少名?
(4)若抽取的學(xué)生中,恰好有九年級(jí)(1)班的2名男生,2名女生,現(xiàn)要從這4人中隨機(jī)抽取2人擔(dān)任組長(zhǎng)工作,請(qǐng)用列表法或樹狀圖法求所抽取的2名學(xué)生中至少有1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知正方形ABCD在直線MN的上方,BC在直線MN上,E是BC上一點(diǎn),以AE為邊在直線MN的上方作正方形AEFG.
(1)連接GD,求證:△ADG≌△ABE;
(2)連接FC,觀察并猜測(cè)∠FCN的度數(shù),并說明理由;
(3)如圖(2),將圖(1)中正方形ABCD改為矩形ABCD,AB=a,BC=b(a、b為常數(shù)),E是線段BC上一動(dòng)點(diǎn)(不含端點(diǎn)B、C),以AE為邊在直線MN的上方作矩形AEFG,使頂點(diǎn)G恰好落在射線CD上.判斷當(dāng)點(diǎn)E由B向C運(yùn)動(dòng)時(shí),∠FCN的大小是否總保持不變?若∠FCN的大小不變,請(qǐng)用含a、b的代數(shù)式表示tan∠FCN的值;若∠FCN的大小發(fā)生改變,請(qǐng)舉例說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)是A(0,﹣2),B(6,﹣4),C(2,﹣6).
(1)請(qǐng)畫出與△ABC關(guān)于x軸對(duì)稱的△A1B1C1.
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請(qǐng)?jiān)?/span>y軸左側(cè)畫出△A2B2C2.
(3)在y軸上存在點(diǎn)P,使得△OB2P的面積為6,請(qǐng)直接寫出滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年5月26日第5屆中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)召開.某市在五屆數(shù)博會(huì)上的產(chǎn)業(yè)簽約金額的折線統(tǒng)計(jì)圖如圖.下列說法正確的是( )
A. 簽約金額逐年增加
B. 與上年相比,2019年的簽約金額的增長(zhǎng)量最多
C. 簽約金額的年增長(zhǎng)速度最快的是2016年
D. 2018年的簽約金額比2017年降低了22.98%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,E為OC上動(dòng)點(diǎn)(與點(diǎn)O不重合),作AF⊥BE,垂足為G,交BC于F,交B0于H,連接OG,CC.
(1)求證:AH=BE;
(2)試探究:∠AGO的度數(shù)是否為定值?請(qǐng)說明理由;
(3)若OG⊥CG,BG=,求△OGC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜專業(yè)戶試種植了一種緊俏蔬菜(都能賣出),其中每千克的成本在9元/千克的基礎(chǔ)上,還有一些上。舾(dòng)價(jià)(元/)與需求量(千克)成反比,比例系數(shù)為30.市場(chǎng)連續(xù)四天調(diào)查發(fā)現(xiàn),蔬菜售價(jià)(元/)與市場(chǎng)需求量有如下關(guān)系:
需求量 | 50 | 40 | 30 | 20 |
蔬菜售價(jià)(元/) | 10 | 15 | 20 | 25 |
(1)直接寫出每千克的成本與需求量的關(guān)系式_________;
(2)求與的關(guān)系式;
(3)當(dāng)某天的利潤(rùn)率達(dá)到時(shí),求這天的需求量;
(4)求需求量是多少千克時(shí),利潤(rùn)達(dá)到最大值,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費(fèi)方案.
甲公司方案:每月的養(yǎng)護(hù)費(fèi)由兩部分組成:固定費(fèi)用400元和服務(wù)費(fèi)用5元/平方米;
乙公司方案:綠化面積不超過1000平方米時(shí),每月收取費(fèi)用5500元;綠化面積超過1000平方米時(shí),每月在收取5500元的基礎(chǔ)上,超過部分每平方米收取4元.
(1)求甲公司養(yǎng)護(hù)費(fèi)用y(元)與綠化面積x(平方米)的函數(shù)解析式(不要求寫出自變量的范圍);
(2)選擇哪家公司的服務(wù),每月的綠化養(yǎng)護(hù)費(fèi)用較少.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com