【題目】如圖,在正方形ABCD中,對角線AC、BD相交于點(diǎn)O,E為OC上動點(diǎn)(與點(diǎn)O不重合),作AF⊥BE,垂足為G,交BC于F,交B0于H,連接OG,CC.
(1)求證:AH=BE;
(2)試探究:∠AGO的度數(shù)是否為定值?請說明理由;
(3)若OG⊥CG,BG=,求△OGC的面積.
【答案】(1)見解析;(2)見解析;(3).
【解析】分析:(1)通過證明△AOH ≌ △BOE得到結(jié)論;
(2)易證△AOH∽△BGH得,由∠OHG =∠AHB可得△OHG∽△AHB,從而∠AGO=∠ABO=45°,從而可得結(jié)論;
(3)易證△ABG ∽△BFG得,故AG·GF=BG 2 =5.再證明△AGO ∽△CGF.可得GO·CG =AG·GF=5.故S△OGC =CG·GO=.
詳解:(1)∵四邊形ABCD是正方形,
∴OA=OB,∠AOB=∠BOE=90°
∵AF⊥BE,
∴∠GAE+∠AEG=∠OBE+∠AEG=90°.
∴∠ GAE =∠OBE .
∴△AOH ≌ △BOE.
∴AH=BE .
(2)∵∠AOH=∠BGH=90°, ∠AHO=∠BHG,
∴△AOH∽△BGH.
∴.
∴.
∵∠OHG =∠AHB.
∴△OHG∽△AHB.
∴∠AGO=∠ABO=45°,即∠AGO的度數(shù)為定值.
(3)∵∠ABC=90°,AF⊥BE,
∴∠BAG=∠FBG,∠AGB=∠BGF=90°,
∴△ABG ∽△BFG.
∴,
∴AG·GF=BG 2 =5.
∵△AHB∽△OHG,
∴∠BAH=∠GOH=∠GBF.
∵∠AOB=∠BGF=90°,
∴∠AOG=∠GFC.
∵∠AGO=45°,CG⊥GO,
∴∠AGO=∠FGC=45°.
∴△AGO ∽△CGF.
∴,
∴GO·CG =AG·GF=5.
∴S△OGC =CG·GO=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(,為常數(shù)).
(1)當(dāng),時,求二次函數(shù)的最小值;
(2)當(dāng)時,若在函數(shù)值的情況下,只有一個自變量的值與其對應(yīng),求此時二次函數(shù)的解析式;
(3)當(dāng)時,若在自變量的值滿足≤≤的情況下,與其對應(yīng)的函數(shù)值的最小值為21,求此時二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=4,將△ABC繞點(diǎn)A順時針旋轉(zhuǎn)30°,得到△ACD,延長AD交BC的延長線于點(diǎn)E,則DE的長為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=+bx+c與x軸交于點(diǎn)A和點(diǎn)B(點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B在原點(diǎn)的右側(cè)),與y軸交于點(diǎn)C,且OC=2OA=2,點(diǎn)D是直線BC下方拋物線上一動點(diǎn).
(1)求出拋物線的解析式;
(2)連接AD和BC,AD交BC于點(diǎn)E,當(dāng)S△ABE:S△BDE=5:4時,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)F為y軸上的一點(diǎn),在(2)的條件下,求DF+OF的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,弦AB=1,點(diǎn)C在AB上移動,連結(jié)OC,過點(diǎn)C作CD⊥OC交⊙O于點(diǎn)D,則CD的最大值為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在推進(jìn)鄭州市城鄉(xiāng)生活垃圾分類的行動中,某社區(qū)對居民掌握垃圾分類知識的情況進(jìn)行調(diào)査.其中,兩小區(qū)分別有1000名居民參加了測試,社區(qū)從中各隨機(jī)抽取50名居民成績進(jìn)行整理得到部分信息:
(信息一)小區(qū)50名居民成績的頻數(shù)直方圖如下(每一組含前一個邊界值,不含后一個邊界值).
(信息二)上圖中,從左往右第四組的成績?nèi)缦拢?/span>
75 | 75 | 79 | 79 | 79 | 79 | 80 | 80 |
81 | 82 | 82 | 83 | 83 | 84 | 84 | 84 |
(信息三),兩小區(qū)各50名居民成績的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(80分及以上為優(yōu)秀)、方差等數(shù)據(jù)如下(部分空缺):
小區(qū) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 優(yōu)秀率 | 方差 |
75.1 | 79 | 40% | 277 | ||
75.1 | 77 | 76 | 45% | 211 |
根據(jù)以上信息,回答下列問題:
(1)求小區(qū)50名居民成績的中位數(shù).
(2)請估計(jì)小區(qū)1000名居民成績能超過平均數(shù)的人數(shù).
(3)請盡量從多個角度(至少三個),選擇合適的統(tǒng)計(jì)量分析,兩小區(qū)參加測試的居民掌握垃圾分類知識的情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知點(diǎn)的坐標(biāo)為,點(diǎn)分別是某函數(shù)圖象與軸、軸的交點(diǎn),點(diǎn)是此圖象上的一動點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為,的長為,且與之間滿足關(guān)系:,則正確結(jié)論的序號是( )
①;②;③當(dāng)時,;④的最大值是6.
A.①②③B.③④C.①②④D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),以原點(diǎn)O為圓心,1為半徑作圓,點(diǎn)P在直線上運(yùn)動,過點(diǎn)P作該圓的一條切線,切點(diǎn)為A,則PA的最小值為
A. 3 B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,,AC=3,BC=4.點(diǎn)O為邊AB上一點(diǎn)(不與A重合)⊙O是以點(diǎn)O為圓心,AO為半徑的圓.當(dāng)⊙O與三角形邊的交點(diǎn)個數(shù)為3時,則OA的范圍( )
A.或B.或
C.D.或
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com