如圖,平行四邊形ABCD中,AB=8cm,AD=12cm,點P在AD 邊上以每秒1cm的速度從點A向點D運動,點Q在BC邊上,以每秒4cm的速度從點C出發(fā),在CB間往返運動,兩個點同時出發(fā),當點P到達點D時停止(同時點Q也停止),在運動以后,以P、D、Q、B四點組成平行四邊形的次數有( 。
A.4次 B.3次 C.2次 D.1次
B【考點】平行四邊形的判定與性質.
【分析】易得兩點運動的時間為12s,PD=BQ,那么以P、D、Q、B四點組成平行四邊形平行四邊形,列式可求得一次組成平行四邊形,算出Q在BC上往返運動的次數可得平行的次數.
【解答】解:∵四邊形ABCD 是平行四邊形,
∴BC=AD=12,AD∥BC,
∵四邊形PDQB是平行四邊形,
∴PD=BQ,
∵P的速度是1cm/秒,
∴兩點運動的時間為12÷1=12s,
∴Q運動的路程為12×4=48cm,
∴在BC上運動的次數為48÷12=4次,
第一次:12﹣t=12﹣4t,
∴t=0,此時兩點沒有運動,
∴點Q以后在BC上的每次運動都會有PD=QB,
∴在運動以后,以P、D、Q、B四點組成平行四邊形的次數有3次,
故選B.
科目:初中數學 來源: 題型:
如圖,E、F分別是正方形ABCD的邊AB、BC上的點,BE=CF,連接CE、DF.△CDF可以看作是將△BCE繞正方形ABCD的中心O按逆時針方向旋轉得到.則旋轉的角度為 °.
查看答案和解析>>
科目:初中數學 來源: 題型:
從甲地到乙地,先是一段上坡路,然后是一段平路,小明騎車從甲地出發(fā),到達乙地后休息一段時間,然后原路返回甲地.假設小明騎車在上坡、平路、下坡時分別保持勻速前進,已知小明騎車上坡的速度比平路上的速度每小時少5km,下坡的速度比在平路上的速度每小時多5km,設小明出發(fā)xh后,到達離乙地ykm的地方,圖中的折線ABCDEF表示y與x之間的函數關系.
(1)小明騎車在平路上的速度為 km/h,他在乙地休息了 h.
(2)分別求線段AB、EF所對應的函數關系式.
(3)從甲地到乙地經過丙地,如果小明兩次經過丙地的時間間隔為0.85h,求丙地與甲地之間的路程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com