【題目】如圖,正方形ABCD中,AB=8cm,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別從B,C兩點(diǎn)同時(shí)出發(fā),以1cm/s的速度沿BC,CD運(yùn)動(dòng),到點(diǎn)C,D時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△OEF的面積為s(cm2),則s(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( )
A.
B.
C.
D.
【答案】B
【解析】解:根據(jù)題意BE=CF=t,CE=8﹣t,
∵四邊形ABCD為正方形,
∴OB=OC,∠OBC=∠OCD=45°,
∵在△OBE和△OCF中
,
∴△OBE≌△OCF(SAS),
∴S△OBE=S△OCF ,
∴S四邊形OECF=S△OBC= ×82=16,
∴S=S四邊形OECF﹣S△CEF=16﹣ (8﹣t)t= t2﹣4t+16= (t﹣4)2+8(0≤t≤8),
∴s(cm2)與t(s)的函數(shù)圖象為拋物線一部分,頂點(diǎn)為(4,8),自變量為0≤t≤8.
故選:B.
由點(diǎn)E,F(xiàn)分別從B,C兩點(diǎn)同時(shí)出發(fā),以1cm/s的速度沿BC,CD運(yùn)動(dòng),得到BE=CF=t,則CE=8﹣t,再根據(jù)正方形的性質(zhì)得OB=OC,∠OBC=∠OCD=45°,然后根據(jù)“SAS”可判斷△OBE≌△OCF,所以S△OBE=S△OCF , 這樣S四邊形OECF=S△OBC=16,于是S=S四邊形OECF﹣S△CEF=16﹣ (8﹣t)t,然后配方得到S= (t﹣4)2+8(0≤t≤8),最后利用解析式和二次函數(shù)的性質(zhì)對(duì)各選項(xiàng)進(jìn)行判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對(duì)應(yīng)的數(shù)為﹣20,B點(diǎn)對(duì)應(yīng)的數(shù)為100.
(1)請(qǐng)寫出與A,B兩點(diǎn)距離相等的點(diǎn)M所對(duì)應(yīng)的數(shù) .
(2)現(xiàn)有一只電子螞蟻P從B點(diǎn)出發(fā),以6單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度向右運(yùn)動(dòng),x秒后兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,請(qǐng)列方程求出x,并指出點(diǎn)C表示的數(shù).
(3)若當(dāng)電子螞蟻P從B點(diǎn)出發(fā)時(shí),以6單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度也向左運(yùn)動(dòng),y秒后兩只電子螞蟻在數(shù)軸上的D點(diǎn)相遇,請(qǐng)列方程求出y并指出點(diǎn)D表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是由些棱長的正方體小木塊搭建成的幾何體的主視圖、俯視圖和左視圖,①請(qǐng)你觀察它是由多少塊小木塊組成的;②在俯視圖中標(biāo)出相應(yīng)位置立方體的個(gè)數(shù);③求出該幾何體的表面積(包含底面).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C、D、E三點(diǎn)在同一直線上,連接BD.
(1)求證:△BAD≌△CAE;
(2)試猜想BD、CE有何特殊位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,AB=5,在AB邊上有一點(diǎn)P,過點(diǎn)P作PM⊥BC,垂足為M,過點(diǎn)M作MN⊥AC,垂足為N,過點(diǎn)N作NQ⊥AB,垂足為Q.當(dāng)PQ=1時(shí),BP=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩地果園分別有橘子40噸和60噸,C、D兩地分別需要橘子30噸和70噸;已知從A、B到C、D的運(yùn)價(jià)如表:
到C地 | 到D地 | |
A果園 | 每噸15元 | 每噸12元 |
B果園 | 每噸10元 | 每噸9元 |
(1)若從A果園運(yùn)到C地的橘子為x噸,則從A果園運(yùn)到D地的橘子為 ____噸,
從A果園將橘子運(yùn)往D地的運(yùn)輸費(fèi)用為 ____ 元.
(2)用含x的式子表示出總運(yùn)輸費(fèi)(要求:列式、化簡).
(3)求總運(yùn)輸費(fèi)用的最大值和最小值.
(4)若這批橘子在C地和D地進(jìn)行再加工,經(jīng)測(cè)算,全部橘子加工完畢后總成本為w元,且w=-(x-25)2+4360.則當(dāng)x= ___ 時(shí),w有最 __ 值(填“大”或“小”).這個(gè)值是 __ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形OABC在平面直角坐標(biāo)系中如圖,已知AB=10,BC=8,EB是C上一點(diǎn),將△ABE沿AE折疊,點(diǎn)B剛好與OC邊上點(diǎn)D重合,過點(diǎn)E的反比例函數(shù)y=(k>0)與AB相交于點(diǎn)F,則線段AF的長為( 。
A. B. C. 2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,E是CD的中點(diǎn),將△ADE繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)后得到△ABF,則EF的長等于( )
A.3
B.
C.2
D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com