【題目】矩形OABC在平面直角坐標(biāo)系中如圖,已知AB=10,BC=8,EB是C上一點(diǎn),將△ABE沿AE折疊,點(diǎn)B剛好與OC邊上點(diǎn)D重合,過點(diǎn)E的反比例函數(shù)y=(k>0)與AB相交于點(diǎn)F,則線段AF的長(zhǎng)為( 。
A. B. C. 2 D.
【答案】B
【解析】
首先根據(jù)折疊的性質(zhì)得到BE=DE,AB=AD,∠ABE=∠ADE=90°,然后利用勾股定理求得OD的長(zhǎng),從而得到DC=OCOD=106=4,設(shè)點(diǎn)E的坐標(biāo)為則可以表示然后在Rt△ECD中,利用勾股定理解得k值后即可求得反比例函數(shù)的解析式,代入y=8后求得x的值即可求得AF.
∵將△ABE沿AE折疊,點(diǎn)B剛好與OC邊上點(diǎn)D重合,
∴BE=DE,AB=AD,∠ABE=∠ADE=90°,
∵AB=10,BC=8,
∴AO=BC=8,AD=AB=10,
∴由勾股定理得:
∴DC=OCOD=106=4,
設(shè)點(diǎn)E的坐標(biāo)為
∴
在Rt△ECD中,
即:
解得:k=30,
∴反比例函數(shù)的解析式是
令y=8,
解得:
∴
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:平面內(nèi)點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最小值稱為該點(diǎn)到這個(gè)圖形的最小距離d,點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最大值稱為該點(diǎn)到這個(gè)圖形的最大距離D,定義點(diǎn)A到圖形G的距離跨度為R=D﹣d.
(1)①如圖1,在平面直角坐標(biāo)系xOy中,圖形G1為以O(shè)為圓心,2為半徑的圓,直接寫出以下各點(diǎn)到圖形G1的距離跨度:
A(﹣1,0)的距離跨度;
B( ,﹣ )的距離跨度;
C(﹣3,2)的距離跨度;
②根據(jù)①中的結(jié)果,猜想到圖形G1的距離跨度為2的所有的點(diǎn)組成的圖形的形狀是 .
(2)如圖2,在平面直角坐標(biāo)系xOy中,圖形G2為以C(1,0)為圓心,2為半徑的圓,直線y=k(x+1)上存在到G2的距離跨度為2的點(diǎn),求k的取值范圍.
(3)如圖3,在平面直角坐標(biāo)系xOy中,射線OA:y= x(x≥0),圓C是以3為半徑的圓,且圓心C在x軸上運(yùn)動(dòng),若射線OA上存在點(diǎn)到圓C的距離跨度為2,直接寫出圓心C的橫坐標(biāo)xc的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=8cm,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別從B,C兩點(diǎn)同時(shí)出發(fā),以1cm/s的速度沿BC,CD運(yùn)動(dòng),到點(diǎn)C,D時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△OEF的面積為s(cm2),則s(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答題.
某校學(xué)生積極為地震災(zāi)區(qū)捐款奉獻(xiàn)愛心.小穎隨機(jī)抽查其中30名學(xué)生的捐款情況如下:(單位:元)2、5、35、8、5、10、15、20、15、5、45、10、2、8、20、30、40、10、15、15、30、15、8、25、25、30、15、8、10、50.
(1)這30名學(xué)生捐款的最大值、最小值、極差、平均數(shù)各是多少?
(2)將30名學(xué)生捐款額分成下面5組,請(qǐng)你完成頻數(shù)統(tǒng)計(jì)表:
(3)根據(jù)上表,作出頻數(shù)分布直方圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,AB=AC,以AB為直徑作⊙O,與BC交于點(diǎn)D,過D作AC的垂線,垂足為E.證明:
(1)BD=DC;
(2)DE是⊙O切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,AD∥BC,∠BAD=∠DCB,若不增加任何字母和輔助線,要使得四邊形ABCD是矩形,則還需要增加一個(gè)條件是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,四邊形ABCD是正方形,∠MAN=45°,它的兩邊AM、AN分別交CB、DC與點(diǎn)M、N,連結(jié)MN,作AH⊥MN,垂足為點(diǎn)H
(1)如圖1,猜想AH與AB有什么數(shù)量關(guān)系?并證明;
(2)如圖2,已知∠BAC=45°,AD⊥BC于點(diǎn)D,且BD=2,CD=3,求AD的長(zhǎng);
小萍同學(xué)通過觀察圖①發(fā)現(xiàn),△ABM和△AHM關(guān)于AM對(duì)稱,△AHN和△ADN關(guān)于AN對(duì)稱,于是她巧妙運(yùn)用這個(gè)發(fā)現(xiàn),將圖形如圖③進(jìn)行翻折變換,解答了此題.你能根據(jù)小萍同學(xué)的思路解決這個(gè)問題嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中有三點(diǎn)A(﹣2,1)、B(3,1)、C(2,3).請(qǐng)回答如下問題:
(1)在坐標(biāo)系內(nèi)描出點(diǎn)A、B、C的位置,并求△ABC的面積;
(2)在平面直角坐標(biāo)系中畫出△A′B′C′,使它與△ABC關(guān)于x軸對(duì)稱,并寫出△A′B′C′三頂點(diǎn)的坐標(biāo);
(3)若M(x,y)是△ABC內(nèi)部任意一點(diǎn),請(qǐng)直接寫出這點(diǎn)在△A′B′C′內(nèi)部的對(duì)應(yīng)點(diǎn)M′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名工人一天可以加工個(gè)零件,或者加工個(gè)零件,每一個(gè)零件和兩個(gè)零件可以組裝成一套零件,某車間共有名工人,問應(yīng)如何安排這些工人,使加工出來的零件剛好可以配套.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com