【題目】已知:拋物線.
(1)求證:拋物線與軸有兩個交點.
(2)設拋物線與軸的兩個交點的橫坐標分別為,(其中).若是關于的函數(shù)、且,求這個函數(shù)的表達式;
(3)若,將拋物線向上平移一個單位后與軸交于點、.平移后如圖所示,過作直線,分別交的正半軸于點和拋物線于點,且.是線段上一動點,求的最小值.
【答案】(1)詳見解析;(2);(3)的最小值
【解析】
(1)通過計算判別式的值,即可得到結論;
(2)根據(jù)一元二次方程的求根公式,用含a的代數(shù)式表示拋物線與軸的兩個交點的橫坐標,,即可得到答案;
(3)易得直線,然后聯(lián)立:,求出點C的坐標,過作軸于點N,過作于點,過作軸于點,把的最小值化為2(MB+GM)的最小值,即可得到答案.
(1)∵,
,
,
∴拋物線與軸有兩個交點;
(2)令,則,
或,
,
且,
,,
,即:;
(3)當,則,向上平移一個單位得:.
令,則得:,
,,
,
直線,
聯(lián)立: ,解得:,,
即,
過作軸于點N,過作于點,過作軸于點,
軸,
∴,
,
,
∵MB+GM≥CH,
的最小值=CH=,
的最小值=.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過三點(1,0),(-6,0)(0,-3).
(1)求該二次函數(shù)的解析式.
(2)若反比例函數(shù)的圖象與二次函數(shù)的圖象在第一象限內(nèi)交于點A(),落在兩個相鄰的正整數(shù)之間,請求出這兩個相鄰的正整數(shù).
(3)若反比例函數(shù)的圖象與二次函數(shù)的圖象在第一象限內(nèi)的交點為B,點B的橫坐標為m,且滿足3<m<4,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.
(1)當?shù)醣鄣撞?/span>A與貨物的水平距離AC為5m時,求吊臂AB的長;
(2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長度與貨物的高度忽略不計,計算結果精確到0.1m,參考數(shù)據(jù):sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于圓,對角線AC與BD相交于點E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC .
(1)若∠DFC=40,求∠CBF的度數(shù).
(2)求證: CD⊥DF .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與軸、軸分別相交于、兩點,點是的中點,點、分別為線段、上的動點,將沿折疊,使點的對稱點恰好落在線段上(不與端點重合).連接分別交、于點、,連接.
(1)求的值;
(2)試判斷與的位置關系,并加以證明;
(3)若,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有3張正面分別寫有數(shù)字,0,1的卡片,它們的背面完全相同,現(xiàn)將這3張卡片背面朝上洗勻,小明先從中任意抽出一張卡片記下數(shù)字為x;小亮再從剩下的卡片中任意取出一張記下數(shù)字為y,記作.
用列表或畫樹狀圖的方法列出所有可能的點P的坐標;
若規(guī)定:點在第二象限小明獲勝;點在第四象限小亮獲勝,游戲規(guī)則公平嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某大學生創(chuàng)業(yè)團隊抓住商機,購進一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量(袋與銷售單價(元之間滿足一次函數(shù)關系,部分數(shù)據(jù)如表所示,其中3.5≤x≤5.5.另外每天還需支付其他各項費用80元.
銷售單價(元 | 3.5 | 5.5 |
銷售量(袋 | 280 | 120 |
(1)請求出與之間的函數(shù)關系式;
(2)設每天的利潤為元,當銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在菱形中,,.動點從點出發(fā),沿邊以每秒1個單位長度的速度運動到點時停止,連接,點與點關于直線對稱,連接,,設運動時間為(秒).
(1)菱形對角線的長為 ;
(2)當點恰在上時,求t的值;
(3)當時,求的周長;
(4)直接寫出在整個運動過程中,點運動的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是的直徑,是的切線,切點為,交于點,點是的中點.
(1)試判斷直線與的位置關系,并說明理由;
(2)若的半徑為2,,,求圖中陰影部分的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com