【題目】定義:如圖1,A,B為直線l同側(cè)的兩點(diǎn),過(guò)點(diǎn)A作直線l的對(duì)稱點(diǎn)A′,連接A′B交直線于點(diǎn)P,連接AP,則稱點(diǎn)P為點(diǎn)A,B關(guān)于直線l的“等角點(diǎn)”.
運(yùn)用:如圖2,在平面直坐標(biāo)系xOy中,已知A(2,),B(﹣2,﹣)兩點(diǎn)
(1)C(4,),D(4,),E(4,),哪個(gè)點(diǎn)是點(diǎn)A,B關(guān)于直線x=4的“等角點(diǎn)”;
(2)若直線l垂直于x軸,點(diǎn)P(m,n)是點(diǎn)A,B關(guān)于直線l的“等角點(diǎn)”,其中m>2,∠APB=α,求證:tan.
【答案】(1)點(diǎn)C;(2)見(jiàn)解析
【解析】
(1)點(diǎn)B關(guān)于直線x=4的對(duì)稱點(diǎn)為B′(10,),由待定系數(shù)法求出直線AB′的解析式為y=﹣x+,當(dāng)x=4時(shí),y=,即可得出結(jié)果;
(2)過(guò)點(diǎn)A作直線l的對(duì)稱點(diǎn)A′,連接A′B,交直線l于點(diǎn)P,作BH⊥l于點(diǎn)H,由點(diǎn)A和A′關(guān)于直線l對(duì)稱,得出∠APG=∠A′PG,證明△AGP∽△BHP,得出=,求出m=,由∠APB=α,AP=A′P,得出∠A=∠A′=,在Rt△AGP中,tan====.
(1)解:點(diǎn)B關(guān)于直線x=4的對(duì)稱點(diǎn)為B′(10,﹣),
設(shè)直線AB′的解析式為:y=kx+b,
則,
解得:,
∴直線AB′的解析式為:y=﹣x+,
當(dāng)x=4時(shí),y=,
∴點(diǎn)C(4,)是點(diǎn)A,B關(guān)于直線x=4的“等角點(diǎn)”;
(
∵點(diǎn)A和A′關(guān)于直線l對(duì)稱,
∴∠APG=∠A′PG,
∵∠BPH=∠A′PG,
∴∠APG=∠BPH,
∵∠AGP=∠BHP=90°,
∴△AGP∽△BHP,
∴=,
即:=,
∴mn=2,
∴m=,
∵∠APB=α,AP=A′P,
∴∠A=∠A′=,
在Rt△AGP中,tan====.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常數(shù)項(xiàng)為0.
(1)求m的值;
(2)求方程的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC,∠ACB=90°,∠ABC=30°,將△ABC 繞頂點(diǎn) C 順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為0 180 ,得到 ABC
(1)求當(dāng)角為多少度時(shí), CBD 是等腰三角形;
(2)如圖②,連接 AA, BB ,設(shè) ACA , BCB 的面積分別為 S1 , S2 ,求的值;
(3)如圖③,設(shè) AC 的中點(diǎn)為 E, AB 的中點(diǎn)為 P,AC=a,連接 EP,當(dāng)旋轉(zhuǎn)角為多少時(shí),EP 長(zhǎng)度最大,并求出 EP 的最大值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了豐富校園文化生活,提高學(xué)生的綜合素質(zhì),促進(jìn)中學(xué)生全面發(fā)展,學(xué)校開(kāi)展了多種社團(tuán)活動(dòng).小明喜歡的社團(tuán)有:合唱社團(tuán)、足球社團(tuán)、書(shū)法社團(tuán)、科技社團(tuán)(分別用字母A,B,C,D依次表示這四個(gè)社團(tuán)),并把這四個(gè)字母分別寫(xiě)在四張完全相同的不透明的卡片的正面上,然后將這四張卡片背面朝上洗勻后放在桌面上.
(1)小明從中隨機(jī)抽取一張卡片是足球社團(tuán)B的概率是 .
(2)小明先從中隨機(jī)抽取一張卡片,記錄下卡片上的字母后不放回,再?gòu)氖S嗟目ㄆ须S機(jī)抽取一張卡片,記錄下卡片上的字母.請(qǐng)你用列表法或畫(huà)樹(shù)狀圖法求出小明兩次抽取的卡片中有一張是科技社團(tuán)D的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知頂點(diǎn)為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(﹣1,﹣4),則下列結(jié)論中錯(cuò)誤的是( 。
A. b2>4ac
B. ax2+bx+c≥﹣6
C. 若點(diǎn)(﹣2,m),(﹣5,n)在拋物線上,則m>n
D. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖像過(guò)點(diǎn)A(1,2),B(3,2),C(5,7).若點(diǎn)M(-2,),N(-1,),K(8,)也在二次函數(shù)的圖像上,則,,的從小到大的關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某日上午7:00,一列火車在A城的正北24km處,以12km/h的速度駛向A城.同時(shí),一輛汽車在A城的正東12km處,以12km/h的速度駛向正西方向行駛.假設(shè)火車和汽車的行駛的方向和速度都保持不變.
問(wèn):(1)何時(shí)火車與汽車之間的距離最近?最近距離是多少千米?
(2)當(dāng)火車與汽車之間的距離最近時(shí),汽車是否已過(guò)鐵路與公路的立交處?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,分別過(guò)點(diǎn)A,C作AE∥DC,CE∥AB,兩線交于點(diǎn)E.
(1)求證:四邊形AECD是菱形;
(2)如果∠B=60°,BC=2,求四邊形AECD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com