【題目】如圖,AB是⊙O的直徑,C、D為⊙O上兩點(diǎn),且,過(guò)點(diǎn)O作OE⊥AC于點(diǎn)E⊙O的切線AF交OE的延長(zhǎng)線于點(diǎn)F,弦AC、BD的延長(zhǎng)線交于點(diǎn)G.
(1)求證:∠F=∠B;
(2)若AB=12,BG=10,求AF的長(zhǎng).
【答案】(1)見解析;(2).
【解析】
(1)根據(jù)圓周角定理得到∠GAB=∠B,根據(jù)切線的性質(zhì)得到∠GAB+∠GAF=90°,證明∠F=∠GAB,等量代換即可證明;
(2)連接OG,根據(jù)勾股定理求出OG,證明△FAO∽△BOG,根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可.
(1)證明:∵,
∴.
∴∠GAB=∠B,
∵AF是⊙O的切線,
∴AF⊥AO.
∴∠GAB+∠GAF=90°.
∵OE⊥AC,
∴∠F+∠GAF=90°.
∴∠F=∠GAB,
∴∠F=∠B;
(2)解:連接OG.
∵∠GAB=∠B,
∴AG=BG.
∵OA=OB=6,
∴OG⊥AB.
∴,
∵∠FAO=∠BOG=90°,∠F=∠B,
∴△FAO∽△BOG,
∴.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】地球環(huán)境問題已經(jīng)成為我們?nèi)找骊P(guān)注的問題.學(xué)校為了普及生態(tài)環(huán)保知識(shí),提高學(xué)生生態(tài)環(huán)境保護(hù)意識(shí),舉辦了“我參與,我環(huán)保”的知識(shí)競(jìng)賽.以下是從初一、初二兩個(gè)年級(jí)隨機(jī)抽取20名同學(xué)的測(cè)試成績(jī)進(jìn)行調(diào)查分析,成績(jī)?nèi)缦拢?/span>
初一:76 88 93 65 78 94 89 68 95 50
89 88 89 89 77 94 87 88 92 91
初二:74 97 96 89 98 74 69 76 72 78
99 72 97 76 99 74 99 73 98 74
(1)根據(jù)上面的數(shù)據(jù),將下列表格補(bǔ)充完整;
整理、描述數(shù)據(jù):
成績(jī)x 人數(shù) 班級(jí) | |||||
初一 | 1 | 2 | 3 | 6 | |
初二 | 0 | 1 | 10 | 1 | 8 |
(說(shuō)明:成績(jī)90分及以上為優(yōu)秀,80~90分為良好,60~80分為合格,60分以下為不合格)
分析數(shù)據(jù):
年級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) |
初一 | 84 | 88.5 | |
初二 | 84.2 | 74 |
(2)得出結(jié)論:
你認(rèn)為哪個(gè)年級(jí)掌握生態(tài)環(huán)保知識(shí)水平較好并說(shuō)明理由.(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),點(diǎn)P是線段AB上異于A、B的動(dòng)點(diǎn),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)D,交拋物線于點(diǎn)C.
(1)求拋物線的解析式;
(2)是否存在這樣的P點(diǎn),使線段PC的長(zhǎng)有最大值,若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)求PAC為直角三角形時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸是,且經(jīng)過(guò)A(﹣4,0),C(0,2)兩點(diǎn),直線l:y=kx+t(k≠0)經(jīng)過(guò)A,C.
(1)求拋物線和直線l的解析式;
(2)點(diǎn)P是直線AC上方的拋物線上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D,交AC于點(diǎn)E,過(guò)點(diǎn)P作PF⊥AC,垂足為F,當(dāng)△PEF≌△AED時(shí),求出點(diǎn)P的坐標(biāo);
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若存在,直接寫出所有滿足條件的Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知邊長(zhǎng)為2a的正方形ABCD,對(duì)角線AC、BD交于點(diǎn)Q,對(duì)于平面內(nèi)的點(diǎn)P與正方形ABCD,給出如下定義:如果,則稱點(diǎn)P為正方形ABCD的“關(guān)聯(lián)點(diǎn)”.在平面直角坐標(biāo)系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).
(1)在,,中,正方形ABCD的“關(guān)聯(lián)點(diǎn)”有_____;
(2)已知點(diǎn)E的橫坐標(biāo)是m,若點(diǎn)E在直線上,并且E是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,求m的取值范圍;
(3)若將正方形ABCD沿x軸平移,設(shè)該正方形對(duì)角線交點(diǎn)Q的橫坐標(biāo)是n,直線與x軸、y軸分別相交于M、N兩點(diǎn).如果線段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a>0)的頂點(diǎn)為M,直線y=m與拋物線交于點(diǎn)A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點(diǎn)之間的部分與線段AB 圍成的圖形稱為該拋物線對(duì)應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點(diǎn)M 稱為碟頂.
(1)由定義知,取AB中點(diǎn)N,連結(jié)MN,MN與AB的關(guān)系是_____.
(2)拋物線y=對(duì)應(yīng)的準(zhǔn)蝶形必經(jīng)過(guò)B(m,m),則m=_____,對(duì)應(yīng)的碟寬AB是_____.
(3)拋物線y=ax2﹣4a﹣(a>0)對(duì)應(yīng)的碟寬在x 軸上,且AB=6.
①求拋物線的解析式;
②在此拋物線的對(duì)稱軸上是否有這樣的點(diǎn)P(xp,yp),使得∠APB為銳角,若有,請(qǐng)求出yp的取值范圍.若沒有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)y=ax2+bx+c(a≠0)的圖象于x軸的交點(diǎn)坐標(biāo)分別為(x1,0),(x2,0),且x1<x2,圖象上有一點(diǎn)M(x0,y0)在x軸下方,對(duì)于以下說(shuō)法:①b2﹣4ac>0②x=x0是方程ax2+bx+c=y0的解③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0其中正確的是( 。
A.①③④B.①②④C.①②③D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+x+4的對(duì)稱軸是直線x=3,且與x軸交于A、B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)以BC為邊作正方形CBDE,求對(duì)角線BE所在直線的解析式;
(3)點(diǎn)P是拋物線上一點(diǎn),若∠APB=45°,求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+8與x軸交于A、B兩點(diǎn),交y軸于點(diǎn)C,連接BC,且點(diǎn)D坐標(biāo)為(﹣2,4),tan∠OBC=.
(1)求拋物線的解析式;
(2)P為第四象限拋物線上一點(diǎn),連接PC、PD,設(shè)點(diǎn)P的橫坐標(biāo)為t,△PCD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)延長(zhǎng)CD交x軸于點(diǎn)E,連接PE,直線DG與x軸交于點(diǎn)G,與PE交于點(diǎn)Q,且OG=2,點(diǎn)F在DQ上,∠DQE+∠BCF=45°,若FQ=2,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com