【題目】某射擊運動員在訓(xùn)練中射擊了10次,成績?nèi)鐖D,下列結(jié)論正確的是(

A.平均數(shù)是8B.眾數(shù)是8 C.中位數(shù)是9 D.方差是1

【答案】B

【解析】

根據(jù)眾數(shù)、中位數(shù)、平均數(shù)以及方差的算法進行計算,即可得到正確的選項.

解:平均數(shù)為6+7×2+8×3+9×2+10×2=8.2,故A選項錯誤,不合題意;

由圖可得,數(shù)據(jù)8出現(xiàn)3次,次數(shù)最多,所以眾數(shù)為8,故B選項正確,符合題意;

10次成績排序后為:6,7,7,8,8,8,9,9,10,10,所以中位數(shù)是:8+8=8,故C選項正確,不合題意;

方差=[2×(108.2)2+2×(98.2)2+3×(88.2)2+2×(78.2)2+(68.2)2]=1.56,故D選項錯誤,不合題意;

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線x軸于A、B兩點,其中點A坐標(biāo)為,與y軸交于點C,且對稱軸在y軸的左側(cè),拋物線的頂點為P.

(1)當(dāng)時,求拋物線的頂點坐標(biāo);

(2)當(dāng)時,求b的值;

(3)在(1)的條件下,點Qx軸下方拋物線上任意一點,點D是拋物線對稱軸與x軸的交點,直線、分別交拋物線的對稱軸于點M、N.請問是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+15分別交x軸、y軸于點A,B,交直線y=x于點M.動點C在直線AB上以每秒3個單位的速度從點A向終點B運動,同時,動點D以每秒a個單位的速度從點0沿OA的方向運動,當(dāng)點C到達終點B時,點D同時停止運動.設(shè)運動時間為t秒.

1)求點A的坐標(biāo)和AM的長.

2)當(dāng)t=5時,線段CDOM于點P,且PC=PD,求a的值.

3)在點C的整個運動過程中,

①直接用含t的代數(shù)式表示點C的坐標(biāo).

②利用(2)的結(jié)論,以C為直角頂點作等腰直角CDE(點C,D,E按逆時針順序排列),當(dāng)OMCDE的一邊平行時,求所有滿足條件的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線y=ax-2amx+am2+2m-5x軸交于A(x1,0),B(x2,0)x1<x2)兩點,頂點為P

1)當(dāng)a=1m=2時,求線段AB的長度;

2)當(dāng)a=2,若點Px軸的距離與點Py軸的距離相等,求該拋物線的解析式;

3)若a= ,當(dāng)2m-5≤x≤2m-2時,y的最大值為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以ABC的邊AB為直徑作⊙O,與BC交于點D,點E是弧BD的中點,連接AEBC于點F,ACB=2BAE.

(1)求證:AC是⊙O的切線;

(2)若,BD=5,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點(頂點是網(wǎng)格線的交點)和直線l及點O.

1)畫出關(guān)于直線l對稱的;

2)連接OA,將OA繞點O順時針旋轉(zhuǎn),畫出旋轉(zhuǎn)后的線段;

3)在旋轉(zhuǎn)過程中,當(dāng)OA有交點時,旋轉(zhuǎn)角的取值范圍為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠A=30°,∠ACB=90°,BC=2,DAB上的動點,將線段CD繞點C逆時針旋轉(zhuǎn)90°,得到線段CE,連接BE,則BE的最小值是(

A.-1B.C.D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,點E,F分別在AB,CD上,且,連接EFBD于點O連接AO.,,則的度數(shù)為(

A.50°B.55°C.65°D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,I是內(nèi)心,ABAC,OAB邊上一點,以點O為圓心,OB為半徑的⊙O經(jīng)過點I

1)求證:AI是⊙O的切線;

2)如圖2,連接CIAB于點E,交⊙O于點F,若tanIBC,求

查看答案和解析>>

同步練習(xí)冊答案