【題目】如圖,在四邊形ABCD中,AC平分∠BAD,BC=CD=10,AB=21,AD=9.求AC的長(zhǎng).
【答案】17
【解析】試題分析:在AB上截取AE=AD,連接EC,作CF⊥AB于點(diǎn)F.可以得出△DAC≌△EAC,從而得到CE=CD=10=BC,利用等腰三角形“三線(xiàn)合一”的性質(zhì)得到EF=FB=6,在Rt△BFC中和在Rt△AFC中,分別利用勾股定理即可得到結(jié)論.
試題解析:解:在AB上截取AE=AD,連接EC,作CF⊥AB于點(diǎn)F.
∵AC平分∠BAD,∴∠DAC=∠EAC.
在△DAC和△EAC中,∵AD=AE,∠DAC=∠EAC,AC=AC,∴△DAC≌△EAC(SAS),
∴CE=CD=10=BC,∴EF=FB=BE=(AB﹣AE)=(AB﹣AD)=6.
在Rt△BFC中,∵BC=10,FB=6,∴CF=8.
在Rt△AFC中,∵CF=8,AF=AE+EF=9+6=15,∴AC=17,∴AC的長(zhǎng)為17.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)前正值草莓銷(xiāo)售季節(jié),小李用2000元在安塞區(qū)草莓基地購(gòu)進(jìn)草莓若干進(jìn)行銷(xiāo)售,由于銷(xiāo)售狀況良好,他又拿出6000元資金購(gòu)進(jìn)該種草莓,但這次的進(jìn)貨價(jià)比第一次的進(jìn)貨價(jià)提高了20%,購(gòu)進(jìn)草莓?dāng)?shù)量比第一次的2倍還多20千克。求該種草莓第一次進(jìn)價(jià)是每千克多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是直線(xiàn)AC上一點(diǎn),OB是一條射線(xiàn),OD平分∠AOB,OE在∠BOC內(nèi)部,∠BOE=∠EOC,∠DOE=70°,求∠EOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】市射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加省比賽,對(duì)他們進(jìn)行了六次測(cè)試,測(cè)試成績(jī)?nèi)绫?/span>:
選手 | 選拔成績(jī)/環(huán) | 中位數(shù) | 平均數(shù) | |||||
甲 | 10 | 9 | 8 | 8 | 10 | 9 | ||
乙 | 10 | 10 | 8 | 10 | 7 | 9 |
(1)把表中所空各項(xiàng)數(shù)據(jù)填寫(xiě)完整;
(2)分別計(jì)算甲、乙六次測(cè)試成績(jī)的方差;
(3)根據(jù)(1),(2)計(jì)算的結(jié)果,你認(rèn)為推薦誰(shuí)參加省比賽更合適?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)AB,CD被直線(xiàn)BD,DF所截,AB∥CD,F(xiàn)B⊥DB,垂足為B,EG平分∠DEB,∠CDE=52°,
∠F=26°.
(1)求證:EG⊥BD;(2)求∠CDB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)請(qǐng)寫(xiě)出△ABC各點(diǎn)的坐標(biāo).
(2)若把△ABC向上平移2個(gè)單位,再向左平移1個(gè)單位得到△A′B′C′,寫(xiě)出 A′、B′、C′的坐標(biāo),并在圖中畫(huà)出平移后圖形.
(3)求出三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)零件的形狀如圖1所示,按規(guī)定這個(gè)零件中∠A和∠DBC都應(yīng)為直角.工人師傅量得這個(gè)零件各邊尺寸如圖2所示.
圖1 圖2
(1)你認(rèn)為這個(gè)零件符合要求嗎?為什么?
(2)求這個(gè)零件的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△DCE均是等腰三角形,CA=CB,CD=CE,∠BCA=∠DCE.
(1)求證:BD=AE;
(2)若∠BAC=70°,求∠BPE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)慶期間,為了滿(mǎn)足百姓的消費(fèi)需求,某商店計(jì)劃用170000元購(gòu)進(jìn)一批家電,這批家電的進(jìn)價(jià)和售價(jià)如表:
類(lèi)別 彩電 冰箱 洗衣機(jī)
進(jìn)價(jià)(元/臺(tái)) 2000 1600 1000
售價(jià)(元/臺(tái)) 2300 1800 1100
若在現(xiàn)有資金允許的范圍內(nèi),購(gòu)買(mǎi)表中三類(lèi)家電共100臺(tái),其中彩電臺(tái)數(shù)是冰箱臺(tái)數(shù)的2倍,設(shè)該商店購(gòu)買(mǎi)冰箱x臺(tái).
(1)商店至多可以購(gòu)買(mǎi)冰箱多少臺(tái)?
(2)購(gòu)買(mǎi)冰箱多少臺(tái)時(shí),能使商店銷(xiāo)售完這批家電后獲得的利潤(rùn)最大?最大利潤(rùn)為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com