【題目】國(guó)慶期間,為了滿足百姓的消費(fèi)需求,某商店計(jì)劃用170000元購(gòu)進(jìn)一批家電,這批家電的進(jìn)價(jià)和售價(jià)如表:

類別 彩電 冰箱 洗衣機(jī)

進(jìn)價(jià)(元/臺(tái)) 2000 1600 1000

售價(jià)(元/臺(tái)) 2300 1800 1100

若在現(xiàn)有資金允許的范圍內(nèi),購(gòu)買表中三類家電共100臺(tái),其中彩電臺(tái)數(shù)是冰箱臺(tái)數(shù)的2倍,設(shè)該商店購(gòu)買冰箱x臺(tái).

(1)商店至多可以購(gòu)買冰箱多少臺(tái)?

(2)購(gòu)買冰箱多少臺(tái)時(shí),能使商店銷售完這批家電后獲得的利潤(rùn)最大?最大利潤(rùn)為多少元?

【答案】(1)26(2)購(gòu)買26臺(tái)時(shí)最大利潤(rùn)為23000

【解析】(1)根據(jù)表格中三種家電的進(jìn)價(jià)表示三種家電的總進(jìn)價(jià),小于等于170000元列出關(guān)于x的不等式,根據(jù)x為正整數(shù),即可解答;
(2)設(shè)商店銷售完這批家電后獲得的利潤(rùn)為y元,則y=(2300-2000)2x+(1800-1600)x+(1100-1000)(100-3x)=500x+10000,結(jié)合(1)中x的取值范圍,利用一次函數(shù)的性質(zhì)即可解答.

(1)根據(jù)題意,得:20002x+1600x+1000(1003x)170000,

解得:x,

x為正整數(shù),

x最多為26,

答:商店至多可以購(gòu)買冰箱26臺(tái).

(2)設(shè)商店銷售完這批家電后獲得的利潤(rùn)為y元,

y=(23002000)2x+(18001600)x+(11001000)(1003x)=500x+10000,

k=500>0,

yx的增大而增大,

xx為正整數(shù),

∴當(dāng)x=26時(shí),y有最大值,最大值為:500×26+10000=23000,

答:購(gòu)買冰箱26臺(tái)時(shí),能使商店銷售完這批家電后獲得的利潤(rùn)最大,最大利潤(rùn)為23000.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD,AC平分∠BAD,BC=CD=10,AB=21,AD=9.AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為( 。

A. 115° B. 120° C. 125° D. 130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DE⊥ABE,DF⊥ACF,若BD=CD、BE=CF.

(1)求證:AD平分∠BAC;

(2)直接寫出AB+ACAE之間的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC中,點(diǎn)D AB邊上一點(diǎn),連接CD,將線段CD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°后得到CE,連接AE.求證:AE∥BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,

將若干個(gè)點(diǎn)擺成三角形圖案,每條邊(包括兩個(gè)端點(diǎn))有n(n是正整數(shù)且n>1)個(gè)點(diǎn),相應(yīng)的圖案中總的點(diǎn)數(shù)記為an , 則 + +…+ =( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下面兩個(gè)定理:

線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等;

到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上.

應(yīng)用上述定理進(jìn)行如下推理:

如圖,直線l是線段MN的垂直平分線.

點(diǎn)A在直線l,AM=AN.(  )

BM=BN,點(diǎn)B在直線l.(  )

CMCN,點(diǎn)C不在直線l.

這是如果點(diǎn)C在直線l,那么CM=CN, (  )

這與條件CMCN矛盾.

以上推理中各括號(hào)內(nèi)應(yīng)注明的理由依次是 (  )

A. ②①① B. ②①②

C. ①②② D. ①②①

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l:y=x﹣ 與x軸正半軸、y軸負(fù)半軸分別相交于A、C兩點(diǎn),拋物線y= x2+bx+c經(jīng)過(guò)點(diǎn)B(﹣1,0)和點(diǎn)C.
(1)填空:直接寫出拋物線的解析式:
(2)已知點(diǎn)Q是拋物線y= x2+bx+c在第四象限內(nèi)的一個(gè)動(dòng)點(diǎn).
①如圖,連接AQ、CQ,設(shè)點(diǎn)Q的橫坐標(biāo)為t,△AQC的面積為S,求S與t的函數(shù)關(guān)系式,并求出S的最大值;

②連接BQ交AC于點(diǎn)D,連接BC,以BD為直徑作⊙I,分別交BC、AB于點(diǎn)E、F,連接EF,求線段EF的最小值,并直接寫出此時(shí)Q點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,BC=4,以頂點(diǎn)A,B為圓心,以AD、BC長(zhǎng)為半徑作兩條弧,兩弧相切于點(diǎn)E,且E在AB上,以AB為直徑作半圓恰好與DC相切,則圖中陰影部分的面積為

查看答案和解析>>

同步練習(xí)冊(cè)答案