從2開始,連續(xù)的偶數(shù)相加,它們和的情況如下表:
加數(shù)的個(gè)數(shù)n S
1 2=1×2
2 2+4=6=2×3
3 2+4+6=12=3×4
4 2+4+6+8=20=4×5
5 2+4+6+8+10=30=5×6
(1)若n=8時(shí),則S的值為
72
72

(2)根據(jù)表中的規(guī)律猜想:用n=24時(shí),則S的值多少?
分析:(1)根據(jù)規(guī)律列式計(jì)算即可得解;
(2)根據(jù)規(guī)律,從2開始的連續(xù)偶數(shù)的和等于偶數(shù)的個(gè)數(shù)乘比個(gè)數(shù)大1的數(shù),寫出n的表達(dá)式,然后把n=24代入進(jìn)行計(jì)算即可得解.
解答:解:(1)n=8時(shí),S=8×9=72;
故答案為:72.

(2)∵2=1×2,
2+4=6=2×3,
2+4+6=12=3×4,
2+4+6+8=20=4×5,
2+4+6+8+10=30=5×6,
…,
∴S=2+4+6+8+10+…+2n=n(n+1),
∴當(dāng)n=24時(shí),S=24×(24+1)=600.
點(diǎn)評:本題是對數(shù)字變化規(guī)律的考查,觀察出連續(xù)偶數(shù)的和與偶數(shù)的個(gè)數(shù)的關(guān)系是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、尋找公式,求代數(shù)式的值:從2開始,連續(xù)的偶數(shù)相加,它們的和的情況如下表:

(1)當(dāng)n個(gè)最小的連續(xù)偶數(shù)相加時(shí),它們的和S與n之間有什么樣的關(guān)系,用公式表示出來;
(2)并按此規(guī)律計(jì)算:(a)2+4+6+…+300的值;(b)162+164+166+…+400的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

尋找公式,求代數(shù)式的值:從2開始,連續(xù)的偶數(shù)相加,它們的和的情況如下表:

(1)當(dāng)n個(gè)最小的連續(xù)偶數(shù)相加時(shí),它們的和S與n之間有什么樣的關(guān)系,用公式表示出來;
(2)按此規(guī)律計(jì)算:①2+4+6+…+200值;②162+164+166+…+400值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

拓展探索、綜合提升
從2開始,連續(xù)的偶數(shù)相加,它們和的情況如下表:
加數(shù)的個(gè)數(shù)n S
1 2=1×2
2 2+4=6=2×3
3 2+4+6=12=3×4
4 2+4+6+8=20=4×5
5 2+4+6+8+10=30=5×6
(1)若n=8時(shí),則S的值為
72
72

(2)根據(jù)表中的規(guī)律猜想:用n的代數(shù)式表示S的公式為:S=2+4+6+8+…+2n=
n(n+1)
n(n+1)

(3)根據(jù)上題的規(guī)律計(jì)算102+104+106+…+2002的值(要有過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

從2開始,連續(xù)的偶數(shù)相加(特別地把n個(gè)2也看做和),和的情況如下:2=2=1×2,2+4=6=2×3,2+4+6=12=3×4,2+4+6+8=20=4×5.
(1)請推測從2開始,n個(gè)連續(xù)偶數(shù)相加,和是多少?
(2)取n=7,驗(yàn)證(1)的結(jié)論是否正確.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

從2開始,連續(xù)的偶數(shù)相加,它們和的情況如下表:
加數(shù)的個(gè)數(shù)n 連續(xù)偶數(shù)的和S
1 2=1×2
2 2+4=6=2×3
3 2+4+6=12=3×4
4 2+4+6+8=20=4×5
5 2+4+6+8+10=30=5×6
(1)如果n=8時(shí),那么S的值為
72
72
;
(2)根據(jù)表中的規(guī)律猜想:用n的代數(shù)式表示S的公式為:S=2+4+6+8+…+2n=
n(n+1)
n(n+1)

(3)根據(jù)上題的規(guī)律計(jì)算300+302+304+…+2010+2012的值(要有計(jì)算過程).

查看答案和解析>>

同步練習(xí)冊答案