【題目】為了強(qiáng)化學(xué)生的環(huán)保意識(shí),某校團(tuán)委在全校舉辦了“保護(hù)環(huán)境,人人有責(zé)”知識(shí)競(jìng)賽活動(dòng),初、高中根據(jù)初賽成績(jī),各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)進(jìn)行復(fù)賽,兩個(gè)隊(duì)學(xué)生的復(fù)賽成績(jī)(滿分10分)如圖所示:
(1)根據(jù)圖示填寫下表:
平均分 | 中位數(shù) | 眾數(shù) | 方差 | |
初中隊(duì) | 8.5 | 0.7 | ||
高中隊(duì) | 8.5 | 10 |
(2)小明同學(xué)說(shuō):“這次復(fù)賽我得了8分,在我們隊(duì)中排名屬中游偏下!”小明是初中隊(duì)還是高中隊(duì)的學(xué)生?為什么?
(3)結(jié)合兩隊(duì)成績(jī)的平均分、中位數(shù)和方差,分析哪個(gè)對(duì)的復(fù)賽成績(jī)較好.
【答案】(1)8.5,8.5,8,1.6;(2)小明在初中隊(duì),理由見解析;(3)初中隊(duì)的成績(jī)好些,理由見解析
【解析】
(1)由條形圖得出初中隊(duì)和高中隊(duì)成績(jī),再根據(jù)平均數(shù)、中位數(shù)、眾數(shù)及方差的概念求解可得;
(2)根據(jù)中位數(shù)的意義求解可得;
(3)從平均數(shù)、中位數(shù)及方差的意義求解可得.
(1):(1)由條形統(tǒng)計(jì)圖知,初中隊(duì)成績(jī)?nèi)缦拢?/span>7.5、8、8.5、8.5、10,高中隊(duì)的成績(jī)?yōu)椋?/span>7、7.5、8、10、10,
所以初中隊(duì)的平均分為,眾數(shù)為8.5;
高中隊(duì)的中位數(shù)為8,方差為×[(7-8.5)2+(7.5-8.5)2+(8-8.5)2+2×(10-8.5)2]=1.6;
補(bǔ)全表格如下:
平均分 | 中位數(shù) | 眾數(shù) | 方差 | |
初中隊(duì) | 8.5 | 8.5 | 8.5 | 0.7 |
高中隊(duì) | 8.5 | 8 | 10 | 1.6 |
(2)小明在初中隊(duì).
理由:根據(jù)(1)可知,初中、高中隊(duì)的中位數(shù)分別為8.5分和8分,
∵8<8.5,
∴小明在初中隊(duì).
(3)初中隊(duì)的成績(jī)好些.因?yàn)閮蓚(gè)隊(duì)的平均數(shù)相同,初中隊(duì)的中位數(shù)高,而且初中隊(duì)的方差小于高中隊(duì)的方差,所以在平均數(shù)相同的情況下中位數(shù)高、方差小的初中隊(duì)成績(jī)較好.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長(zhǎng)線于點(diǎn)M.請(qǐng)判斷的值及∠AMB的度數(shù),并說(shuō)明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請(qǐng)直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在中,的角平分線交邊于.
(1)以邊上一點(diǎn)為圓心,過(guò)兩點(diǎn)作(不寫作法,保留作圖痕跡),再判斷直線與的位置關(guān)系,并說(shuō)明理由;
(2)若(1)中的與邊的另一個(gè)交點(diǎn)為,,求線段與劣弧所圍成的圖形面積.(結(jié)果保留根號(hào)和)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為□ABCD的對(duì)稱中心,點(diǎn)A的坐標(biāo)為(-2,-2),AB=5,AB//x軸,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)D,將□ABCD沿y軸向下平移,使點(diǎn)C的對(duì)應(yīng)點(diǎn)C′落在反比例函數(shù)的圖象上,則平移過(guò)程中線段AC掃過(guò)的面積為( )
A.10B.18C.20D.24
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+mx(m<0)交x軸于O,A兩點(diǎn),頂點(diǎn)為點(diǎn)B.
(1)求△AOB的面積(用含m的代數(shù)式表示);
(2)直線y=kx+b(k>0)過(guò)點(diǎn)B,且與拋物線交于另一點(diǎn)D(點(diǎn)D與點(diǎn)A不重合),交y軸于點(diǎn)C.過(guò)點(diǎn)C作CE∥AB交x軸于點(diǎn)E.
(。 若∠OBA=90°,2<<3,求k的取值范圍;
(ⅱ) 求證:DE∥y軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,現(xiàn)給以下結(jié)論:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m為實(shí)數(shù));⑤4ac﹣b2<0.其中錯(cuò)誤結(jié)論的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)A(-1,0)B(4,0),C(0,4)三點(diǎn).
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)將(1)中的拋物線向下平移個(gè)長(zhǎng)度單位,再向左平移h(h>0)個(gè)長(zhǎng)度單位,得到新拋物線.若新拋物線的頂點(diǎn)在△ABC內(nèi),求h的取值范圍;
(3)點(diǎn)P為線段BC上的一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B,C重合),過(guò)點(diǎn)P作x軸的垂線交(1)中的拋物線于點(diǎn)Q,當(dāng)△PQC與△ABC相似時(shí),求△PQC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某藥店購(gòu)進(jìn)一批消毒液,計(jì)劃每瓶標(biāo)價(jià)100元,由于疫情得到有效控制,藥店決定對(duì)這批消毒液全部降價(jià)銷售,設(shè)每次降價(jià)的百分率相同,經(jīng)過(guò)連續(xù)兩次降價(jià)后,每瓶售價(jià)為81元.
(1)求每次降價(jià)的百分率.
(2)若按標(biāo)價(jià)出售,每瓶能盈利100%,問(wèn)第一次降價(jià)后銷售消毒液100瓶,第二次降價(jià)后至少需要銷售多少瓶,總利潤(rùn)才能超過(guò)5000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,RtABC中,∠C=90°,AC=10,BC=16.動(dòng)點(diǎn)P以每秒3個(gè)單位的速度從點(diǎn)A開始向點(diǎn)C移動(dòng),直線l從與AC重合的位置開始,以相同的速度沿CB方向平行移動(dòng),且分別與CB,AB邊交于E,F兩點(diǎn),點(diǎn)P與直線l同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)點(diǎn)P移動(dòng)到與點(diǎn)C重合時(shí),點(diǎn)P和直線l同時(shí)停止運(yùn)動(dòng).在移動(dòng)過(guò)程中,將PEF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn),使得點(diǎn)P的對(duì)應(yīng)點(diǎn)M落在直線l上,點(diǎn)F的對(duì)應(yīng)點(diǎn)記為點(diǎn)N,連接BN,當(dāng)BN∥PE時(shí),t的值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com