【題目】如圖,四邊形ABCD中,∠ABC 60,∠ADC 120,AB BC,AD DC 2,則四邊形ABCD的面積是__________.
【答案】
【解析】
由題意正確作出輔助線并根據(jù)等邊三角形判定與性質(zhì)和全等三角形的判定和性質(zhì)以及勾股定理進(jìn)行綜合分析求解.
解:如圖,延長(zhǎng)CD至E,使DE=DA.連接AC.
∵∠ADC=120°,
∴∠ADE=60°,
∵AD=DE,
∴△EAD是等邊三角形,
∴AE=AD,∠DAE=60°,
∵AB=AC,∠ABD=60°,
∵∠BAD=60°+∠CAD,∠EAC=60°+∠CAD,
∴∠BAD=∠CAE,
∴△BAD≌△CAE(SAS),
故AD+CD=DE+CD=CE=BD=2.
∴∠ADB=∠E=60°,
∴∠BDC=120°-60°=60°,
過(guò)點(diǎn)B作BF⊥AD于F點(diǎn),過(guò)B點(diǎn)作BG⊥DC,交DC延長(zhǎng)線于G點(diǎn),
在Rt△BFD中,DF=BD=1,由勾股定理可得BF=,
同理可得BG=.
四邊形ABCD面積=△ABD面積+△BCD面積= ADBF+CDBG=(AD+CD),
∵AD DC 2,
∴四邊形ABCD面積==.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】攀枝花得天獨(dú)厚,氣候宜人,農(nóng)產(chǎn)品資源極為豐富,其中晚熟芒果遠(yuǎn)銷北上廣等大城市.某水果店購(gòu)進(jìn)一批優(yōu)質(zhì)晚熟芒果,進(jìn)價(jià)為10元/千克,售價(jià)不低于15元/千克,且不超過(guò)40元/每千克,根據(jù)銷售情況,發(fā)現(xiàn)該芒果在一天內(nèi)的銷售量(千克)與該天的售價(jià)(元/千克)之間的數(shù)量滿足如下表所示的一次函數(shù)關(guān)系.
銷售量(千克) | … | 32.5 | 35 | 35.5 | 38 | … |
售價(jià)(元/千克) | … | 27.5 | 25 | 24.5 | 22 | … |
(1)某天這種芒果售價(jià)為28元/千克.求當(dāng)天該芒果的銷售量
(2)設(shè)某天銷售這種芒果獲利元,寫出與售價(jià)之間的函數(shù)關(guān)系式.如果水果店該天獲利400元,那么這天芒果的售價(jià)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,A,B兩個(gè)頂點(diǎn)在x軸上方,點(diǎn)C的坐標(biāo)是(﹣1,0),以點(diǎn)C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長(zhǎng)放大到原來(lái)的2倍,得到△A'B'C',設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)B'的橫坐標(biāo)為2,則點(diǎn)B的橫坐標(biāo)為( )
A.﹣1B.C.﹣2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠EDF的頂點(diǎn)D在△ABC的邊AB所在直線上(不與A,B重合),DE交AC所在直線于點(diǎn)M,DF交BC所在直線于點(diǎn)N,設(shè)AM=x,BN=y,記△ADM的面積為S1,△BND的面積為S2.
(1)如圖(1),當(dāng)△ABC是等邊三角形,AB=6,∠EDF=∠A,且DE∥BC,AD=2時(shí),S1S2= ;
(2)在(1)的條件下,將點(diǎn)D沿AB平移,使AD=4,再將∠EDF繞點(diǎn)D旋轉(zhuǎn)如圖(2)所示位置,
①求y與x的函數(shù)關(guān)系式;②求S1S2的值;
(3)當(dāng)△ABC是等腰三角形時(shí),設(shè)∠B=∠A=∠EDF=α,如圖(3),當(dāng)點(diǎn)D在BA的延長(zhǎng)線上運(yùn)動(dòng)時(shí),設(shè)的AD=a,BD=b,直接寫出S1S2的關(guān)系式(用含a、b和α的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),∠CAB的角平分線AD交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若∠CAB=60°,DE=3,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,AB=AC,∠BAC=120°,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,∠MPN的度數(shù)是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說(shuō)明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=8,請(qǐng)直接寫出△PMN面積的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著經(jīng)濟(jì)的快速發(fā)展,環(huán)境問(wèn)題越來(lái)越受到人們的關(guān)注.某校學(xué)生會(huì)為了了解垃圾分類知識(shí)的普及情況,隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類,并將調(diào)查結(jié)果繪制成下面兩幅統(tǒng)計(jì)圖.
(1)求:本次被調(diào)查的學(xué)生有多少名?補(bǔ)全條形統(tǒng)計(jì)圖.
(2)估計(jì)該校1200名學(xué)生中“非常了解”與“了解”的人數(shù)和是多少.
(3)被調(diào)查的“非常了解”的學(xué)生中有2名男生,其余為女生,從中隨機(jī)抽取2人在全校做垃圾分類知識(shí)交流,請(qǐng)利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系 XOY中,對(duì)于任意兩點(diǎn) (,)與 (,)的“非常距離”,給出如下定義: 若 ,則點(diǎn) 與點(diǎn) 的“非常距離”為 ;若 ,則點(diǎn) 與點(diǎn)的“非常距離”為 .
例如:點(diǎn) (1,2),點(diǎn) (3,5),因?yàn)?/span> ,所以點(diǎn) 與點(diǎn) 的“非常距離”為 ,也就是圖1中線段 Q與線段 Q長(zhǎng)度的較大值(點(diǎn) Q為垂直于 y軸的直線 Q與垂直于 x軸的直線 Q的交點(diǎn))。
(1)已知點(diǎn) A(-,0), B為 y軸上的一個(gè)動(dòng)點(diǎn),①若點(diǎn) A與點(diǎn) B的“非常距離”為2,寫出一個(gè)滿足條件的點(diǎn) B的坐標(biāo);②直接寫出點(diǎn) A與點(diǎn) B的“非常距離”的最小值;
(2)已知 C是直線 上的一個(gè)動(dòng)點(diǎn),①如圖2,點(diǎn) D的坐標(biāo)是(0,1),求點(diǎn) C與點(diǎn) D的“非常距離”的最小值及相應(yīng)的點(diǎn) C的坐標(biāo); ②如圖3, E是以原點(diǎn) O為圓心,1為半徑的圓上的一個(gè)動(dòng)點(diǎn),求點(diǎn) C與點(diǎn) E的“非常距離”的最小值及相應(yīng)的點(diǎn) E和點(diǎn) C的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形 ABCD 中,點(diǎn) E,F 分別在 BC,CD 邊上,且 CE=3,CF=4.若△AEF 是等邊三角形,則 AB 的長(zhǎng)為___.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com