【題目】計(jì)算:(﹣12)+5=( )
A.7
B.﹣7
C.17
D.﹣17

【答案】B
【解析】解:(﹣12)+5=﹣(12﹣5)=﹣7,

故答案為:B.

異號(hào)兩數(shù)相加,取絕對(duì)值較大的的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種細(xì)菌的半徑是0.000 0036毫米,這個(gè)數(shù)用科學(xué)記數(shù)法可表示為( 。

A. 3.6×106毫米B. 3.6×105毫米

C. 0.36×107毫米D. 36×104毫米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在金融危機(jī)的影響下,國(guó)家采取擴(kuò)大內(nèi)需的政策,基建投資成為拉動(dòng)內(nèi)需最強(qiáng)有力的引擎.現(xiàn)金強(qiáng)公司中標(biāo)一項(xiàng)工程,在甲、乙兩地施工,其中甲地需推土機(jī)30臺(tái),乙地需推土機(jī)26臺(tái),公司在A、B兩地分別庫存推土機(jī)32臺(tái)和24臺(tái),現(xiàn)從A地運(yùn)一臺(tái)到甲、乙兩地的費(fèi)用分別是400元和300元,從B地運(yùn)一臺(tái)到甲、乙兩地的費(fèi)用分別為200元和500元.若設(shè)從A地運(yùn)往甲地臺(tái)推土機(jī),運(yùn)甲、乙兩地所需的這批推土機(jī)的總費(fèi)用為元.

(1)求的函數(shù)關(guān)系式;

(2)公司應(yīng)設(shè)計(jì)怎樣的方案,能使運(yùn)送這批推土機(jī)的總費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC是等邊三角形,點(diǎn)D、E分別在邊BC、AC上,且BD=CE,AD與BE相交于點(diǎn)F.

(1)求證:△ABD≌△BCE

(2)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店對(duì)一周內(nèi)甲、乙兩種計(jì)算器每天銷售情況統(tǒng)計(jì)如下(單位:個(gè)):

品種\星期

3

4

4

3

4

5

5

4

3

3

4

3

5

6

(1)求出本周內(nèi)甲、乙兩種計(jì)算器平均每天各銷售多少個(gè)?

(2)甲、乙兩種計(jì)算器哪個(gè)銷售更穩(wěn)定一些?請(qǐng)你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD是平行四邊形,AECF,且分別交對(duì)角線BD于點(diǎn)E,F

(1)求證:AEB≌△CFD;

(2)連接AF,CE,若∠AFE=CFE,求證:四邊形AFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以四邊形ABCD的邊AB、AD為邊分別向外側(cè)作等邊三角形ABFADE,連接EB、FD,交點(diǎn)為G

(1)當(dāng)四邊形ABCD為正方形時(shí)(如圖1),EBFD的數(shù)量關(guān)系是   ;

(2)當(dāng)四邊形ABCD為矩形時(shí)(如圖2),EBFD具有怎樣的數(shù)量關(guān)系?請(qǐng)加以證明;

(3)四邊形ABCD由正方形到矩形到一般平行四邊形的變化過程中,∠EGD是否發(fā)生變化?如果改變,請(qǐng)說明理由;如果不變,請(qǐng)?jiān)趫D3中求出∠EGD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測(cè)量學(xué)校旗桿的高度,身高相同的小張和小李站在操場(chǎng)如圖所示的位置,小張?jiān)?/span>C處測(cè)得旗桿頂端的仰角為18°,小李在D處測(cè)得旗桿頂端的仰角為72°,又已知兩人之間的距離CD24米,兩人的眼睛離地面的距離AC、BD均為1.6米,旗桿的底部N距離操場(chǎng)所在平面的垂直高度NK=2米,求旗桿MN的高度.(參考數(shù)據(jù):tan18°≈.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程(12x﹣32=8;(24x2﹣6x﹣3=0

3)(2x﹣32=52x﹣3);(4)(x+8)(x+1=﹣12

查看答案和解析>>

同步練習(xí)冊(cè)答案