【題目】如圖1所示,將一個(gè)邊長為2的正方形ABCD和一個(gè)長為2,寬為1的長方形CEFD拼在一起,構(gòu)成一個(gè)大的長方形ABEF,現(xiàn)將小長方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至CE′F′D′,旋轉(zhuǎn)角為α

1)當(dāng)邊CD′恰好經(jīng)過EF的中點(diǎn)H時(shí),求旋轉(zhuǎn)角α的大;

2)如圖2,GBC中點(diǎn),且α90°,求證:GD′=E′D;

3)小長方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一周的過程中,△DCD′△BCD′能否全等?若能,直接寫出旋轉(zhuǎn)角α的大;若不能,說明理由.

【答案】(1∠α=30°;(2)證明見解析;(3)旋轉(zhuǎn)角a的值為135°315°時(shí),△BCD′△DCD′全等.

【解析】試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得CE=CH=1,即可得出結(jié)論;

2)由GBC中點(diǎn)可得CG=CE,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠D′CE′=∠DCE=90°,CE=CE′CE,則∠GCD′=∠DCE′=90°+α,然后根據(jù)“SAS”可判斷△GCD′≌△E′CD,則GD′=E′D;

3)根據(jù)正方形的性質(zhì)得CB=CD,而CD=CD′,則△BCD′△DCD′為腰相等的兩等腰三角形,當(dāng)兩頂角相等時(shí)它們?nèi),?dāng)△BCD′△DCD′為鈍角三角形時(shí),可計(jì)算出α=135°,當(dāng)△BCD′△DCD′為銳角三角形時(shí),可計(jì)算得到α=315°

試題解析:(1

長方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至CE′F′D′,∴CE=CH=1,∴△CEH為等腰直角三角形,∴∠ECH=45°∴∠α=30°;

2)證明:∵GBC中點(diǎn),∴CG=1,∴CG=CE長方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至CE′F′D′,∴∠D′CE′=∠DCE=90°,CE=CE′=CG,∴∠GCD′=∠DCE′=90°+α,在△GCD′△E′CD中,∵CD′=CD,∠GCD=∠DCE′CG=CE′,∴△GCD′≌△E′CDSAS),∴GD′=E′D;

3)解:能.

理由如下:

四邊形ABCD為正方形,∴CB=CD,∵CD′=CD′,∴△BCD′△DCD′為腰相等的兩等腰三角形,當(dāng)∠BCD′=∠DCD′時(shí),△BCD′≌△DCD′,當(dāng)△BCD′△DCD′為鈍角三角形時(shí),則旋轉(zhuǎn)角α=360°-90°÷2=135°,當(dāng)△BCD′△DCD′為銳角三角形時(shí),∠BCD′=∠DCD′=∠BCD=45°,則α=360°﹣90°÷2=315°,即旋轉(zhuǎn)角a的值為135°315°時(shí),△BCD′△DCD′全等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于O點(diǎn),∠AOC與∠AOD的度數(shù)比為4:5,OE⊥AB,OF平分∠DOB,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙、丙三個(gè)廠家生產(chǎn)的同一種產(chǎn)品中抽取 8 件產(chǎn)品,對(duì)其使用壽命跟 蹤調(diào)查.結(jié)果如下(單位:年)

三個(gè)廠家在廣告中都稱該產(chǎn)品的使用壽命是 8 年,請(qǐng)根據(jù)結(jié)果來判斷廠家在廣告中分別 運(yùn)用了平均數(shù)、眾數(shù)、中位數(shù)的哪一種集中趨勢的特征數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:x24x50(用配方法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ADBC,AE平分∠BACBC于點(diǎn)E.

(1)B=30°,C=70°,求∠EAD的大小;

(2)若∠B<C,則2EAD與∠C-B是否相等?若相等,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知m﹣2n=﹣1,則代數(shù)式1﹣2m+4n的值是(
A.﹣3
B.﹣1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一塊直角三角板DEF放置在ABC上,三角板DEF的兩條直角邊DE、DF恰好分別經(jīng)過點(diǎn)BCABC中,∠A=50°,求∠DBA+DCA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABBD,ABED,AB=ED,要說明ABC≌△EDC,若以“SAS”為依據(jù),還要添加的條件為 ;若添加條件AC=EC,則可以用 公理(或定理)判定全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條拋物線經(jīng)過(2,5),(0,-3)(1,-4)三點(diǎn)

(1)求此拋物線的表達(dá)式;

(2)假如這條拋物線與x軸交于點(diǎn)A,B,y軸交于點(diǎn)C,已知點(diǎn)A在點(diǎn)B左側(cè)試判斷△OCB的形狀

查看答案和解析>>

同步練習(xí)冊(cè)答案