【題目】已知關(guān)于x的一元二次方程x2-6x+a-2=0.
(1)如果該方程有實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;
(2)如果該方程有兩個(gè)相等的實(shí)數(shù)根,求出這兩個(gè)根.
【答案】(1) ;(2)
【解析】試題分析:(1)根據(jù)判別式的意義得到△=(-6)2-4(a-2)≥0,然后解不等式即可;
(2)根據(jù)判別式的意義得到△=(-3)2-4(2a+1)=0,然后解關(guān)于a的方程得到a=5,則原方程變形為x2-4x+4=0,然后利用配方法解此一元二次方程.
(1)根據(jù)題意得△=(6)24(2a+1) ≥0,
解得a≤11;
(2)根據(jù)題意得△=(6)24(a-2)=0,
解得a=11,
原方程變形為x26x+9=0,
(x3)2=0,
所以x1=x2=2.
點(diǎn)睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2﹣4ac:當(dāng)△>0時(shí),一元二次方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0時(shí),一元二次方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0時(shí),一元二次方程沒有實(shí)數(shù)根.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對任意一個(gè)三位數(shù)n,如果n滿足各數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個(gè)數(shù)為“相異數(shù)”.將一個(gè)“相異數(shù)”任意兩個(gè)數(shù)位上的數(shù)字對調(diào)后可以得到三個(gè)不同的新三位數(shù),把這三個(gè)新三位數(shù)的和與111的商記為F(n).例如n=123,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個(gè)位上的數(shù)字得到321,對調(diào)十位與個(gè)位上的數(shù)字得到132,這三個(gè)新三位數(shù)的和為213+321+132=666,666÷111=6,所以F(123)=6.
(1)計(jì)算:F(243),F(xiàn)(617);
(2)若s,t都是“相異數(shù)”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整數(shù)),規(guī)定:k= ,當(dāng)F(s)+F(t)=18時(shí),求k的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD與四邊形DEFG都是正方形,設(shè)AB=a,DE=b(a>b).
(1)寫出AG的長度(用含字母a,b的代數(shù)式表示);
(2)觀察圖形,當(dāng)用不同的方法表示圖形中陰影部分的面積時(shí),你能獲得一個(gè)因式分解公式,請將這個(gè)公式寫出來;
(3)如果正方形ABCD的邊長比正方形DEFG的邊長多16cm,它們的面積相差960cm2,試?yán)茫?/span>2)中的公式,求a,b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圖1中,A1,B1,C1分別是△ABC的邊BC,CA,AB的中點(diǎn),在圖2中,A2,B2,C2分別是△A1B1C1的邊B1C1,C1A1,A1B1的中點(diǎn),…,按此規(guī)律,則第n個(gè)圖形中平行四邊形的個(gè)數(shù)共有___個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,∠BAC=90°,∠ABC=45°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線段BC上時(shí)可以證明△ABD≌△ACF,則
①BC與CF的位置關(guān)系為: ;
②BC,DC,CF之間的數(shù)量關(guān)系為: ;
(2)類比探究
如圖2,當(dāng)點(diǎn)D在線段BC的延長線上時(shí),其他條件不變,(1)中①,②結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明;
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線段BC的反向延長線上時(shí),且點(diǎn)A,F分別在直線BC的兩側(cè),其他條件不變.
①BC,DC,CF之間的數(shù)量關(guān)系為:
②若正方形ADEF的邊長為2,對角線AE,DF相交于點(diǎn)O,連接OC,則OC的長度為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD被直線AE所截,直線AM,EN被MN所截.請你從以下三個(gè)條件:①AB∥CD;②AM∥EN;③∠BAM=∠CEN中選出兩個(gè)作為已知條件,另一個(gè)作為結(jié)論,得出一個(gè)正確的命題.
(1)請按照:“∵ , ;∴ ”的形式,寫出所有正確的命題;
(2)在(1)所寫的命題中選擇一個(gè)加以證明,寫出推理過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛客車從甲地開往乙地,一輛轎車從乙地開往甲地,兩車同時(shí)出發(fā),兩車行駛x小時(shí)后,記客車離甲地的距離y1千米,轎車離甲地的距離y2千米,y1、y2關(guān)于x的函數(shù)圖象如圖所示:
①根據(jù)圖象直接寫出y1、y2關(guān)于x的函數(shù)關(guān)系式;
②當(dāng)兩車相遇時(shí),求此時(shí)客車行駛的時(shí)間.
③相遇后,兩車相距200千米時(shí),求客車又行駛的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】其工廠甲.乙兩個(gè)部門各有員工人,為了解這兩個(gè)部門員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過程如下,請補(bǔ)充完整.
收集數(shù)據(jù)
從甲、乙兩個(gè)部門各隨機(jī)抽取名員工進(jìn)行了生產(chǎn)技能測試,測試成績(百分制)如下:
甲:78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙:93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述數(shù)據(jù)
(1)按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
成績?nèi)藬?shù)部門 | ||||||
甲 | ||||||
乙 |
(說明:成績分及以上為生產(chǎn)技能優(yōu)秀,分為生產(chǎn)技能良好,分為生產(chǎn)技能合格,分以下為生產(chǎn)技能不合格)
(2)若按照甲部門的樣本數(shù)據(jù),在列頻數(shù)分布表時(shí),若取組距為,則這小組的頻數(shù)為 ,頻率為 ;
(3)若按照乙部門的樣本數(shù)據(jù)畫出扇形統(tǒng)計(jì)圖,則表示生產(chǎn)技能優(yōu)秀部分的圓心角是 度;
得出結(jié)論:
(4)估計(jì)乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為 ;
(5)可以推斷出部門員工的生產(chǎn)技能水平較高,你的理由為 (說出一條即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com