【題目】已知,在△ABC中,∠BAC90°,∠ABC45°,ABAC,點(diǎn)D為直線(xiàn)BC上一動(dòng)點(diǎn)(點(diǎn)D不與BC重合),以AD為邊作正方形ADEF,連接CF

(1)觀(guān)察猜想

如圖1,當(dāng)點(diǎn)D在線(xiàn)段BC上時(shí)可以證明△ABD≌△ACF,則

①BCCF的位置關(guān)系為:

②BC,DC,CF之間的數(shù)量關(guān)系為: ;

(2)類(lèi)比探究

如圖2,當(dāng)點(diǎn)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上時(shí),其他條件不變,(1),結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫(xiě)出正確結(jié)論再給予證明;

(3)拓展延伸

如圖3,當(dāng)點(diǎn)D在線(xiàn)段BC的反向延長(zhǎng)線(xiàn)上時(shí),且點(diǎn)A,F分別在直線(xiàn)BC的兩側(cè),其他條件不變.

①BCDC,CF之間的數(shù)量關(guān)系為:

若正方形ADEF的邊長(zhǎng)為2,對(duì)角線(xiàn)AEDF相交于點(diǎn)O,連接OC,則OC的長(zhǎng)度為

【答案】1①BC⊥CF;②BCDCCF;(2成立,不成立,結(jié)論應(yīng)改為BCCFDC,理由詳見(jiàn)解析;(3)①BCDCCF;②

【解析】

1)①根據(jù)SAS證明△ABD≌△ACF,可得∠ABC=∠ACF45°,則∠BCF=∠ACB+∠ACF90°,所以BCCF;
②由△ABD≌△ACF的性質(zhì)和線(xiàn)段的和可得結(jié)論;
2)①成立,證明∠BAC+∠CAD=∠DAF+∠CAD,即∠BAD=∠CAF,同理證明△ABD≌△ACF,可得BCCF
②不成立,由BDBCCD,BDCF,可得新的結(jié)論:BCCFDC;
3)①根據(jù)圖3知:DC最長(zhǎng),同理:△DAB≌△FAC,則BDCF,可得BCDCCF;
②先根據(jù)正方形的邊長(zhǎng)求對(duì)角線(xiàn)DF的長(zhǎng),證明∠DCF90°,根據(jù)直角三角形斜邊中線(xiàn)的性質(zhì)可得OC的長(zhǎng).

1)①BCCF,理由是:
如圖1,∵四邊形ADEF是正方形,
∴∠DAF90°,ADAF,
∵∠BAC90°
∴∠BAD+∠DAC=∠DAC+∠CAF
∴∠BAD=∠CAF,
在△BAD和△CAF中,

∴△BAD≌△CAFSAS),
∴∠ABC=∠ACF45°
∵∠ACB45°,
∴∠BCF=∠ACB+∠ACF90°,
BCCF
BCDCCF,
理由是:由①知:△ABD≌△ACF
BDCF,
BCBDCDCFCD;
故答案為:①BCCF,②BCCFCD
2)①成立,②不成立,結(jié)論②應(yīng)改為BCCFDC;
證明:如圖2,在正方形ADEF中,
ADAF,∠DAF90°,
∵∠BAC90°
∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAD=∠CAF
∵∠ABC45°,
∴∠ACB180°BACABC45°
∴∠ABC=∠ACB,
ABAC,
在△ABD與△ACF中,,
∴△ABD≌△ACF,
∴∠ACF=∠ABD45°,BDCF
∵∠ACB45°,
∴∠BCF=∠ACB+∠ACF90°,
BCCF;
BDBCCDBDCF,
BCCFDC;
3)①BCDCCF
理由是:如圖3,同理得:∠DAB=∠FAC,
易證得:△DAB≌△FAC
BDCF,
DCBDBCCFBC,
BCDCCF;
②正方形ADEF中,邊長(zhǎng)EF2
DF2
∵∠ABC45°
∴∠ABD135°
∵△DAB≌△FAC
∴∠ACF=∠ABD135°
∵∠ACB45°
∴∠DCF90°
∵四邊形ADEF是正方形
ODOF
OCDF
故答案為:①BCDCCF,②

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四邊形ABCD和四邊形OEFG都是正方形,點(diǎn)O是正方形ABCD兩對(duì)角線(xiàn)的交點(diǎn),已知AB=2,EF=3,正方形OEFG繞點(diǎn)O轉(zhuǎn)動(dòng),OE交BC上一點(diǎn)N,OG交CD上一點(diǎn)M.求四邊形OMCN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖顯示了用計(jì)算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果.

下面有三個(gè)推斷:

①當(dāng)投擲次數(shù)是500時(shí),計(jì)算機(jī)記錄釘尖向上的次數(shù)是308,所以釘尖向上的概率是0.616;

②隨著實(shí)驗(yàn)次數(shù)的增加,釘尖向上的頻率總在0.618附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)釘尖向上的概率是0.618;

③若再次用計(jì)算機(jī)模擬實(shí)驗(yàn),則當(dāng)投擲次數(shù)為1000時(shí),釘尖向上的概率一定是0.620.

其中合理的是(

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于A、B兩點(diǎn),與y軸交于C(0,3),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0).點(diǎn)P是拋物線(xiàn)上一個(gè)動(dòng)點(diǎn),且在直線(xiàn)BC的上方.

(1)求這個(gè)二次函數(shù)的表達(dá)式.

(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形 ABPC的面積最大,并求出此時(shí)點(diǎn)P的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x26xa20

1)如果該方程有實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;

2如果該方程有兩個(gè)相等的實(shí)數(shù)根,求出這兩個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校九年級(jí)共500名學(xué)生參加法律知識(shí)測(cè)試,從中隨機(jī)抽取一部分試卷成績(jī)(得分取整數(shù))為樣本作統(tǒng)計(jì)分析,進(jìn)行整理后分成五組,并繪制成頻數(shù)分布直方圖(見(jiàn)圖)請(qǐng)結(jié)合直方圖提供的信息,解答以下問(wèn)題:

1)隨機(jī)抽取了多少名學(xué)生的測(cè)試成績(jī)?

270.580.5這一分?jǐn)?shù)段的頻率是多少?

3)若90分以上(不含90分)定為優(yōu)秀,樣本中的優(yōu)秀率是多少?

4)請(qǐng)估計(jì)出該校九年級(jí)這次法律知識(shí)測(cè)試獲得優(yōu)秀的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,F為弦AC的中點(diǎn),連接OF并延長(zhǎng)交于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線(xiàn),交BA的延長(zhǎng)線(xiàn)于點(diǎn)E

1)求證:ACDE;

2)連接CD,若OA=AE=1,求四邊形ACDE面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面推理過(guò)程:

如圖,已知∠B+BCD=180°,∠B=D.求證:∠E=DFE

證明:∵∠B+BCD=180°,

AB ( )

∴∠B=DCE( )

又∵∠B=D,

∴∠DCE=D( )

( )

∴∠E=DFE( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,廣安市防洪指揮部發(fā)現(xiàn)渠江邊一處長(zhǎng)400米,高8米,背水坡的坡角為45°的防洪大堤(橫截面為梯形ABCD)急需加固.經(jīng)調(diào)查論證,防洪指揮部專(zhuān)家組制定的加固方案是:背水坡面用土石進(jìn)行加固,并使上底加寬2米,加固后,背水坡EF的坡比i=1:2.

(1)求加固后壩底增加的寬度AF的長(zhǎng);

(2)求完成這項(xiàng)工程需要土石多少立方米?

查看答案和解析>>

同步練習(xí)冊(cè)答案