【題目】如圖,已知△ABC是等邊三角形,D是邊AC的中點(diǎn),連接BDECBC于點(diǎn)C,CEBD.求證:△ADE是等邊三角形.

【答案】詳見(jiàn)解析.

【解析】

利用△ABC是等邊三角形,D為邊AC的中點(diǎn),求得∠ADB90°,再用SAS證明△CBD≌△ACE,推出AECDAD,∠AEC=∠BDC90°,根據(jù)直角三角形斜邊上中線性質(zhì)求出DEAD,即可得出答案.

證明:∵△ABC是等邊三角形,D為邊AC的中點(diǎn),

BDAC,即∠ADB90°,

ECBC,

∴∠BCE90°,

∴∠DBC+DCB90°,∠ECD+BCD90°,

∴∠ACE=∠DBC,

∵在△CBD和△ACE

∴△CBD≌△ACESAS),

CDAE,∠AEC=∠BDC90°,

D為邊AC的中點(diǎn),∠AEC90°,

ADDE

ADAEDE,

即△ADE是等邊三角形,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在一條筆直的道路上相向而行,甲騎自行車從A地到B,乙駕車從B地到A他們分別以不同的速度勻速行駛,已知甲先出發(fā)6分鐘后乙才出發(fā),在整個(gè)過(guò)程中甲、乙兩人的距離y(千米)與甲出發(fā)的時(shí)間x(分)之間的關(guān)系如圖所示,當(dāng)乙到達(dá)終點(diǎn)A時(shí),甲還需 分鐘到達(dá)終點(diǎn)B

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),△ACD、△CBE都是等邊三角形,AEDC于點(diǎn)M,BDCE于點(diǎn)N,下列說(shuō)法一定正確的是________(請(qǐng)把你認(rèn)為正確答案的序號(hào)填在橫線上)

AE=BD;②∠AEC=BDC;③AM=DN;④DM=CN;⑤CM=MN;⑥MNAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平行四邊形ABCD,延長(zhǎng)ADE,使DE=AD,連接BEDC交于O點(diǎn).

(1)求證:△BOC≌△EOD;

(2)當(dāng)△ABE滿足什么條件時(shí),四邊形BCED是菱形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊿中,,點(diǎn)分別在 邊上,且, .

⑴.求證:⊿是等腰三角形;

⑵.當(dāng) 時(shí),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“六一”兒童節(jié)前夕,某部隊(duì)?wèi)?zhàn)士到福利院慰問(wèn)兒童.戰(zhàn)士們從營(yíng)地出發(fā),勻速步行前往文具店選購(gòu)禮物,停留一段時(shí)間后,繼續(xù)按原速步行到達(dá)福利院(營(yíng)地、文具店、福利院三地依次在同一直線上).到達(dá)后因接到緊急任務(wù),立即按原路勻速跑步返回營(yíng)地(贈(zèng)送禮物的時(shí)間忽略不計(jì)),下列圖象能大致反映戰(zhàn)

士們離營(yíng)地的距離與時(shí)間之間函數(shù)關(guān)系的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).

(1)請(qǐng)?jiān)趫D中,畫(huà)出ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1

(2)以點(diǎn)O為位似中心,將ABC縮小為原來(lái)的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè),畫(huà)出△A2B2C2,并求出∠A2C2B2的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)C1在邊BC上,將C1CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到A1AD.A1F平分∠BA1C1,交BD于點(diǎn)F,過(guò)點(diǎn)FFEA1C1,垂足為E,當(dāng)A1E=3,C1E=2時(shí),則BD的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某加工廠以每噸3000元的價(jià)格購(gòu)進(jìn)50噸原料進(jìn)行加工.若進(jìn)行粗加工,每噸加工費(fèi)用為600元,需天,每噸售價(jià)4000元;若進(jìn)行精加工,每噸加工費(fèi)用為900元,需天,每噸售價(jià)4500元.現(xiàn)將這50噸原料全部加工完.設(shè)其中粗加工x噸,獲利y元.

(1)請(qǐng)完成表格并求出yx的函數(shù)關(guān)系式(不要求寫(xiě)自變量的范圍);

(2)如果必須在20天內(nèi)完成,如何安排生產(chǎn)才能獲得最大利潤(rùn),最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案